20.已知函數(shù)f(log4x)=x,則$f(\frac{1}{2})$=2.

分析 利用函數(shù)的解析式求解函數(shù)值即可.

解答 解:函數(shù)f(log4x)=x,則$f(\frac{1}{2})$=f(log42)=2.
故答案為:2.

點(diǎn)評 本題考查函數(shù)的解析式的應(yīng)用,函數(shù)值的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.化簡:$\frac{{cos(π+x)•sin(3π-x)•cos(-\frac{π}{2}-x)}}{{tan(π+x)•cos(\frac{3π}{2}-x)•sin(x-\frac{π}{2})}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)$y=-2sin(\frac{π}{4}-\frac{x}{2})$的周期、振幅、初相分別是( 。
A.$2π,-2,\frac{π}{4}$B.$4π,2,\frac{π}{4}$C.$2π,2,-\frac{π}{4}$D.$4π,2,-\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)m個(gè)正數(shù)a1,a2,…,am(m≥4,m∈N*)依次圍成一個(gè)圓圈.其中a1,a2,a3,…,ak-1,ak(k<m,k∈N*)是公差為d的等差數(shù)列,而a1,am,am-1,…,ak+1,ak是公比為q的等比數(shù)列.
(1)若a1=d=1,q=2,k=8,求數(shù)列a1,a2,…,am的所有項(xiàng)的和Sm;
(2)若a1=d=q=3,m<2015,求m的最大值;
(3)當(dāng)q=2時(shí)是否存在正整數(shù)k,滿足a1+a2+…+ak-1+ak=3(ak+1+ak+2+…+am-1+am)?若存在,求出k值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知銳角α的終邊上一點(diǎn)P(sin40°,cos40°),則α等于( 。
A.20°B.40°C.50°D.80°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求函數(shù)y=($\frac{1}{3}$)${\;}^{-2{x}^{2}-8x+1}$(-3≤x≤1)的單調(diào)區(qū)間與值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.用分析法證明:已知a,b∈R且a≠b,則$|\frac{1}{{a}^{2}+1}-\frac{1}{^{2}+1}|<|a-b|$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某市出租車的收費(fèi)標(biāo)準(zhǔn)為:乘坐距離3公里以內(nèi)(含3公里)按起點(diǎn)價(jià)10元收費(fèi).超過3公里,超出里程每公里按1.5元加收,如果超過15公里,則超出里程按每公里2.1元收費(fèi),寫出收費(fèi)y(元)與里程x(公里)的函數(shù)關(guān)系式,并作出函數(shù)圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題:
①若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$=λ$\overrightarrow$(λ∈R);
②若m$\overrightarrow{a}$=m$\overrightarrow$(m∈R),則$\overrightarrow{a}$=$\overrightarrow$;
③λ($\overrightarrow{a}$+$\overrightarrow$)=λ$\overrightarrow{a}$+λ$\overrightarrow$(λ∈R).
其中正確的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案