9.已知函數(shù)f(x)=x3+bx2+cx+d(b,c,d為常數(shù)),當x∈(0,1)時取得極大值,當x∈(1,2)時取極小值,則(b+$\frac{1}{2}$)2+(c-3)2的取值范圍是(5,25).

分析 據(jù)極大值點左邊導數(shù)為正右邊導數(shù)為負,極小值點左邊導數(shù)為負右邊導數(shù)為正得a,b的約束條件,據(jù)線性規(guī)劃求出最值.

解答 解:∵f(x)=x3+bx2+cx+d,
∴f′(x)=3x2+2bx+c,
∵函數(shù)f(x)在x∈(0,1)時取得極大值,當x∈(1,2)時取極小值,
∴f′(x)=3x2+2bx+c=0在(0,1)和(1,2)內(nèi)各有一個根,
∴f′(0)>0,f′(1)<0,f′(2)>0,
∴$\left\{\begin{array}{l}{c>0}\\{3+2b+c<0}\\{12+4b+c>0}\end{array}\right.$作出不等式組對應(yīng)的平面區(qū)域如圖,
(b+$\frac{1}{2}$)2+(c-3)2的幾何意義表示點G(-$\frac{1}{2}$,3)與可行域內(nèi)的點連線的距離的平方,
點G(-$\frac{1}{2}$,3)到直線3+2b+c=0的距離為d=$\frac{丨-\frac{1}{2}×2+3+3丨}{\sqrt{{2}^{2}+1}}$此時(b+$\frac{1}{2}$)2+(c-3)2最小為5,
由$\left\{\begin{array}{l}{12+4b+c=0}\\{3+2b+c=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{b=-\frac{9}{2}}\\{c=6}\end{array}\right.$,即A(-$\frac{9}{2}$,6),
此時AG的距離最大為AG=5,此時(b+$\frac{1}{2}$)2+(c-3)2最大為25,
∴(b+$\frac{1}{2}$)2+(c-3)2的取值范圍是(5,25),
故答案為:(5,25).

點評 本題主要考查利用導數(shù)研究函數(shù)極值,考查利用函數(shù)導數(shù)的定義將條件轉(zhuǎn)化為不等式組,線性規(guī)劃的知識及兩點間的距離公式,綜合性較強,有一定的難度,屬于難題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

19.設(shè)等比數(shù)列{an}的公比為q,其前n項之積為Tn,并且滿足條件:a1>1,a2016a2017>1,$\frac{{a}_{2016}-1}{{a}_{2017}-1}<0$,給出下列結(jié)論:(1)0<q<1;(2)a2016a2018-1>0;(3)T2016是數(shù)列{Tn}中的最大項;(4)使Tn>1成立的最大自然數(shù)等于4031,其中正確的結(jié)論為( 。
A.(2),(3)B.(1),(3)C.(1),(4)D.(2),(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>0),過橢圓C右頂點和上頂點的直線l與圓x2+y2=$\frac{2}{3}$相切.
(1)求橢圓C的方程;
(2)設(shè)M是橢圓C的上頂點,過點M分別作直線MA,MB交橢圓C于A,B兩點,設(shè)這兩條直線的斜率分別為k1,k2,且k1+k2=2,證明:直線AB過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$(2a+1)x2-2(a+1)x.
(1)若f(x)在x=1處取得極大值,求實數(shù)a的取值范圍;
(2)存在x∈[1,2],使f(x)≤0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若$\overrightarrow a=(0,2),\overrightarrow b=(2sinθ,-2cosθ)$,其中$θ∈(-\frac{π}{2},0)$,則$\overrightarrow a$與$\overrightarrow b$的夾角α=( 。
A.$\frac{3π}{2}-θ$B.$\frac{π}{2}-θ$C.π-θD.π+θ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=2x3+ax2+6在x=1時取得極值.
(1)求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知數(shù)列{an}的前n項和Sn=2n,數(shù)列{bn}滿足b1=1,bn+1=bn+(2n-1)(n=1,2,3…).
(Ⅰ)求數(shù)列{an}的通項an;
(Ⅱ)求數(shù)列{bn}的通項bn;
(Ⅲ)若cn=$\frac{{a}_{n}_{n}}{n}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.以下不等式結(jié)果計算正確的是( 。
A.3-0.4<3-0.5B.1.022>1.025C.0.3m<0.3n(m<n)D.am>an(0<a<1,m<n)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知圓C的方程為x2+y2=4.
(1)求過點P(1,2)且與圓C相切的直線l的方程;
(2)直線l過點P(1,2),且與圓C交于A、B兩點,若|AB|=2$\sqrt{3}$,求直線l的方程;
(3)圓C上有一動點M(x0,y0),$\overrightarrow{ON}$=(0,y0),若向量$\overrightarrow{OQ}$=$\overrightarrow{OM}$+$\overrightarrow{ON}$,求動點Q的軌跡方程,并說明此軌跡是什么曲線.

查看答案和解析>>

同步練習冊答案