8.“函數(shù)f(x)=x3+(a2-1)x2為奇函數(shù)”是“a=1”的(  )
A.必要不充分條件B.充分不必要條件
C.充分必要條件D.既不充分也不必要條件

分析 由函數(shù)f(x)=x3+(a2-1)x2為奇函數(shù),可得f(-x)+f(x)=0,解出a即可判斷出結(jié)論.

解答 解:∵函數(shù)f(x)=x3+(a2-1)x2為奇函數(shù),
∴f(-x)+f(x)=0,可得a2-1=0,解得a=±1,
∴“函數(shù)f(x)=x3+(a2-1)x2為奇函數(shù)”是“a=1”的必要不充分條件.
故選:A.

點(diǎn)評 本題考查了函數(shù)的奇偶性、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.有一個可同時進(jìn)出水的容器,每單位時間內(nèi)的水量是一定的,設(shè)從某時刻開始10min內(nèi)只進(jìn)水不出水,在隨后的30min內(nèi)既進(jìn)水又出水,得到時間x(min)與水量y(L)之間的關(guān)系如圖所示.若40min后只放水不進(jìn)水,求y與x的函數(shù)關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.關(guān)于θ 的函數(shù)f(θ)=cos2θ-2xcosθ-1的最大值記為M(x),則M(x)的解析式為$\left\{\begin{array}{l}{2x}&{x≥0}\\{-2x}&{x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若命題p:?x0∈R,x0-2>lgx0,則¬p是( 。
A.?x0∈R,x0-2≤lgx0B.?x0∈R,x0-2<lgx0C.?x∈R,x-2<lgxD.?x∈R,x-2≤lgx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=Acos(ωx+φ)的圖象如圖所示,則f($\frac{5π}{6}$)=( 。
A.-$\frac{2}{3}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f(x)=kx+b,若f(1)=-2,f(-1)=0,則(  )
A.k=1,b=-1B.k=-1,b=-1C.k=-1,b=1D.k=1,b=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$\frac{2}{a+i}$=1-i,其中i為虛數(shù)單位,a∈R,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知$\overrightarrow{a}$=(1,t),$\overrightarrow$=(t,-6),則|2$\overrightarrow{a}$+$\overrightarrow$|的最小值為$2\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.點(diǎn)(5$\sqrt{a}$+1,$\sqrt{a}$)在圓(x-1)2+y2=26的內(nèi)部,則a的取值范圍是0≤a<$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案