分析 如圖建立直角坐標(biāo)系.不妨記以A為起點(diǎn),其余頂點(diǎn)為終點(diǎn)的向量為$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$分別為$\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD}$,以C為起點(diǎn),其余頂點(diǎn)為終點(diǎn)的向量為$\overrightarrow{{c}_{1}}$,$\overrightarrow{{c}_{2}}$,$\overrightarrow{{c}_{3}}$分別為$\overrightarrow{CD},\overrightarrow{CA},\overrightarrow{CB}$.再分類討論當(dāng)i,j,k,l取不同的值時(shí),利用向量的坐標(biāo)運(yùn)算計(jì)算($\overrightarrow{{a}_{i}}$+$\overline{{a}_{j}}$)•($\overrightarrow{{c}_{s}}$+$\overrightarrow{{c}_{t}}$)最小值.
解答 解:不妨記以A為起點(diǎn),其余頂點(diǎn)為終點(diǎn)的向量為$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$分別為$\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD}$,以C為起點(diǎn),其余頂點(diǎn)為終點(diǎn)的向量為$\overrightarrow{{c}_{1}}$,$\overrightarrow{{c}_{2}}$,$\overrightarrow{{c}_{3}}$分別為$\overrightarrow{CD},\overrightarrow{CA},\overrightarrow{CB}$.如圖建立坐標(biāo)系.
(1)當(dāng)i=1,j=2,s=1,t=2時(shí),則($\overrightarrow{{a}_{i}}$+$\overline{{a}_{j}}$)•($\overrightarrow{{c}_{s}}$+$\overrightarrow{{c}_{t}}$)=[(1,0)+(1,1)]•[((-1,0)+(-1,-1)]=-5;
(2)當(dāng)i=1,j=2,s=1,t=3時(shí),則($\overrightarrow{{a}_{i}}$+$\overline{{a}_{j}}$)•($\overrightarrow{{c}_{s}}$+$\overrightarrow{{c}_{t}}$)=[(1,0)+(1,1)]•[((-1,0)+(0,-1)]=-3;
(3)當(dāng)i=1,j=2,s=2,t=3時(shí),則($\overrightarrow{{a}_{i}}$+$\overline{{a}_{j}}$)•($\overrightarrow{{c}_{s}}$+$\overrightarrow{{c}_{t}}$)=[(1,0)+(1,1)]•[((-1,-1)+(0,-1)]=-4;
(4)當(dāng)i=1,j=3,s=1,t=2時(shí),則($\overrightarrow{{a}_{i}}$+$\overline{{a}_{j}}$)•($\overrightarrow{{c}_{s}}$+$\overrightarrow{{c}_{t}}$)=[(1,0)+(0,1)]•[((-1,0)+(-1,-1)]=-3;
同樣地,當(dāng)i,j,s,t取其它值時(shí),($\overrightarrow{{a}_{i}}$+$\overline{{a}_{j}}$)•($\overrightarrow{{c}_{s}}$+$\overrightarrow{{c}_{t}}$)=-5,-4,或-3.
則($\overrightarrow{{a}_{i}}$+$\overline{{a}_{j}}$)•($\overrightarrow{{c}_{s}}$+$\overrightarrow{{c}_{t}}$)的最小值是-5.
故答案為:-5
點(diǎn)評 本小題主要考查平面向量坐標(biāo)表示、平面向量數(shù)量積的運(yùn)算等基本知識,考查考查分類討論、化歸以及數(shù)形結(jié)合等數(shù)學(xué)思想方法,考查分析問題、解決問題的能力
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{13}$ | B. | $\sqrt{5}$ | C. | $\sqrt{14}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | g(x)=cos$\frac{x}{2}$ | B. | g(x)=-sin2x | C. | g(x)=sin(2x-$\frac{π}{3}$) | D. | g(x)=sin($\frac{x}{2}$+$\frac{π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | -$\sqrt{2}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{12}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com