9.下列向量組中,能作為它們所在平面內(nèi)所有向量的基底的是( 。
A.$\overrightarrow{a}$=(1,2),$\overrightarrow$=(0,0)B.$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,-4)C.$\overrightarrow{a}$=(1,2),$\overrightarrow$=(3,6)D.$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,2)

分析 只需判斷所給向量是否共線即可.

解答 解:選項A中,$\overrightarrow$為零向量,故A錯誤;
選項B中,$\overrightarrow$=-2$\overrightarrow{a}$,即$\overrightarrow{a},\overrightarrow$共線,故B錯誤;
選項C中,$\overrightarrow$=3$\overrightarrow{a}$,即$\overrightarrow{a},\overrightarrow$共線,故C錯誤;
選項D中,1×2-2×2=-2≠0,$\overrightarrow{a},\overrightarrow$不共線,能作為它們所在平面內(nèi)所有向量的基底,故D正確;
故選:D.

點評 本題考查了平面向量的基本定理,基底向量的條件.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在空間中,下列命題正確的是( 。
A.如果直線m∥平面α,直線n?α內(nèi),那么m∥n
B.如果平面α內(nèi)的兩條直線都平行于平面β,那么平面α∥平面β
C.如果平面α外的一條直線m垂直于平面α內(nèi)的兩條相交直線,那么m⊥α
D.如果平面α⊥平面β,任取直線m?α,那么必有m⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.拋物線y2+4x=0上的一點P到直線x=3的距離等于5,則P到焦點F的距離|PF|=( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知A、B、C三點在球O的球面上,AB=BC=CA=3,且球心O到平面ABC的距離等于球半徑的$\frac{1}{3}$,則球O的表面積為( 。
A.12πB.16πC.18πD.$\frac{27π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,a=2,b=1,sinA=$\frac{1}{3}$,則sinB=$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)是奇函數(shù)的是(  )
A.y=xsinxB.y=x2cosxC.y=$\frac{sinx}{x}$D.y=$\frac{cosx}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知二次函數(shù)y=f(x)最小值為0,且有f(0)=f(2)=1.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)若函數(shù)y=f(x)在[0,m]上的值域是[0,1],求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且an-a1=2$\sqrt{{S}_{n-1}{a}_{1}}$(n≥2),若bn=$\frac{{a}_{n+1}}{{a}_{n}}$+$\frac{{a}_{n}}{{a}_{n+1}}$,則bn=$\frac{8{n}^{2}+2}{4{n}^{2}-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知四棱錐P-ABCD為球O內(nèi)接四棱錐,PC⊥平面ABCD,PC=$\sqrt{6}$,AD=$\frac{1}{2}$AB=2,∠DAB=$\frac{π}{3}$,則球O的表面積S=10π.

查看答案和解析>>

同步練習(xí)冊答案