16.讀程序,輸出的結(jié)果是209.

分析 根據(jù)程序語言的運行過程,得出該程序運行后輸出的S=2+3+4+…+20,求出S的值即可.

解答 解:根據(jù)程序語言的運行過程,得
該程序運行后輸出的是
S=2+3+4+…+20=19×$\frac{2+20}{2}$=209.
故答案為:209.

點評 本題考查了程序語言的應(yīng)用問題,解題時應(yīng)模擬程序的運行過程,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知A(-2,0),B(2,0),且△ABM的周長等于2$\sqrt{6}$+4,求動點M的軌跡G的方程:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知拋物線C:y2=2px上一點$A({\frac{1}{2},a})$到焦點F距離為1,
(1)求拋物線C的方程;
(2)直線l過點(0,2)與拋物線交于M,N兩點,若OM⊥ON,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>0,b>0)經(jīng)過點(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$).且離心率為$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過橢圓C的左焦點F作兩條互相垂直的動弦AB與CD,記由A,B,C,D四點構(gòu)成的四邊形的面積為S,求S的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f($\frac{{x}_{1}}{{x}_{2}}$)=f(x1)-f(x2).
(1)求f(1)的值;
(2)若當(dāng)x>1時,有f(x)<0.求證:f(x)為單調(diào)遞減函數(shù);
(3)在(2)的條件下,若f(5)=-1,求f(x)在[3,25]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的長軸長為4,離心率為$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)P為橢圓$\frac{x^2}{2}+{y^2}=1$上任意一點,過點P的直線y=kx+m交橢圓C于A,B兩點,射線PO交橢圓C于點Q(O為坐標(biāo)原點).(i)是否存在常數(shù)λ,使得S△ABQ=λS△ABO恒成立?若存在,求出λ的值,否則,請說明理由;
(ii)求△ABQ面積的最大值,并寫出取最大值時k與m的等量關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=x+tanx+1,若f(a)=2,則f(-a)的值為( 。
A.0B.-1C.-2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)A,B是橢圓$\frac{{x}^{2}}{2}$+y2=1上的兩個動點,O是坐標(biāo)原點,且AO⊥BO,作OP⊥AB,垂足為P,則|OP|=( 。
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知F是橢圓C:$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{4}$=1的右焦點,P是C上一點,A(-2,1),當(dāng)△APF周長最小時,其面積為4.

查看答案和解析>>

同步練習(xí)冊答案