18.某開發(fā)公司要生產(chǎn)若干件新產(chǎn)品,需要精加工后,才能投放市場,現(xiàn)有甲、乙兩個加工廠都想加工這批產(chǎn)品.已知甲、乙兩個工廠每天分別能加工這種產(chǎn)品16件和24件,且知單獨加工這批產(chǎn)品甲比乙要多用20天,又知若由甲單獨做,公司需付甲廠每天費用180元,若由乙廠單獨做,公司需付乙廠每天費用220元.
(1)求這批產(chǎn)品共有多少件?
(2)在加工過程中,公司需另派一名工程師到廠進行技術(shù)指導(dǎo),并由公司為其提供每天10元的午餐補助費,公司制定產(chǎn)品加工方案如下:可由一個工廠單獨加工完成;也可以由兩個廠合作完成,請你幫助公司從所有可供選擇的方案中,選擇一種最省錢的加工方案.

分析 (1)設(shè)這批產(chǎn)品共有x件,根據(jù)題意構(gòu)造方程$\frac{x}{16}$-$\frac{x}{24}$=20,解得答案;
(2)分別討論出由甲廠單獨加工,由乙廠單獨加工,由兩廠合作加工的費用,比較后,可得答案.

解答 解:(1)設(shè)這批產(chǎn)品共有x件,
則$\frac{x}{16}$-$\frac{x}{24}$=20,
解得:x=960,
即這批產(chǎn)品共有960件;
(2)由甲廠單獨加工:需要耗時$\frac{960}{16}$=60天,需要費用為:60×(180+10)=11400元;
由乙廠單獨加工:需要耗時$\frac{960}{24}$=40天,需要費用為:40×(220+10)=9200元;
由兩廠合作加工:需要耗時$\frac{960}{24+16}$=24天,需要費用為:24×(220+10+180+10)=10080元;
故有乙廠單獨加工最省錢.

點評 本題考查的知識點是根據(jù)實際選擇函數(shù)模型,一元一次方程的應(yīng)用,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知集合A={x|2<x≤6},B={x|3<x<9}.
(1)分別求A∩B,B∪A;
(2)已知C={x|a<x<a+1},若C⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,a2+b2-c2=ab,則cosC=( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$-\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=loga(x+1)(a>0且a≠1)的圖象恒過點為( 。
A.(1,0)B.(0,1)C.(-1,0)D.(0,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若函數(shù)f(x)同時滿足以下三個性質(zhì):①f(x)的最小正周期為π;②對任意的x∈R,都有f(x-$\frac{π}{4}$)+f(-x)=0;③f(x)在($\frac{π}{4}$,$\frac{π}{2}$)上是減函數(shù),則f(x)的解析式可能是( 。
A.f(x)=sin2x+cos2xB.f(x)=sin2xC.f(x)=tan(x+$\frac{π}{8}$)D.f(x)=cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知數(shù)列{an}中,a1=1,an+1=an(1-nan+1),則數(shù)列{an}的通項公式為( 。
A.an=$\frac{{n}^{2}-n+2}{2}$B.an=$\frac{{n}^{2}-n+1}{2}$C.an=$\frac{2}{{n}^{2}-n+1}$D.an=$\frac{2}{{n}^{2}-n+2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知sin(α+β)=$\frac{33}{65}$,cosβ=-$\frac{5}{13}$,且0<α<$\frac{π}{2}$,$\frac{π}{2}$<β<π,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)S為復(fù)數(shù)集C的非空子集.如果
(1)S含有一個不等于0的數(shù);
(2)?a,b∈S,a+b,a-b,ab∈S;
(3)?a,b∈S,且b≠0,$\frac{a}$∈S,那么就稱S是一個數(shù)域.
現(xiàn)有如下命題:
①如果S是一個數(shù)域,則0,1∈S;
②如果S是一個數(shù)域,那么S含有無限多個數(shù);
③復(fù)數(shù)集是數(shù)域;
④S={a+b$\sqrt{2}$|a,b∈Q,}是數(shù)域;
⑤S={a+bi|a,b∈Z}是數(shù)域.
其中是真命題的有①②③④(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平行六面體(底面是平行四邊形的四棱柱)ABCD-A′B′C′D′中,分別標(biāo)出$\overrightarrow{AB}$+$\overrightarrow{AD}$+$\overrightarrow{AA′}$,$\overrightarrow{AB}$+$\overrightarrow{AA′}$+$\overrightarrow{AD}$表示的向量.從中你能體會向量加法運算的交換律及結(jié)合律嗎?一般地,三個不共面的向量的和與這三個向量有什么關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案