A. | $\sqrt{6}$ | B. | 4 | C. | $\sqrt{5}$ | D. | $2\sqrt{3}$ |
分析 由已知及等差數(shù)列的性質(zhì)可得2b=a+c,由三角形面積公式可解得ac=6,利用余弦定理即可求得b的值.
解答 解:∵a、b、c成等差數(shù)列,∴2b=a+c①,
∵∠B=60°,△ABC的面積為$\frac{{3\sqrt{3}}}{2}$=$\frac{1}{2}$acsinB=$\frac{1}{2}$×$\frac{\sqrt{3}}{2}$×ac,解得:ac=6②,
∴由余弦定理可得:b2=a2+c2-2accosB=a2+c2-ac=(a+c)2-3ac=4b2-18,解得:b=$\sqrt{6}$.
故選:A.
點(diǎn)評(píng) 本題主要考查了等差數(shù)列的性質(zhì),考查了三角形面積公式,余弦定理的應(yīng)用,數(shù)列掌握相關(guān)公式定理是解題的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | c<a<b | C. | a<c<b | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $?x∈(0,\frac{π}{2}),sinx+cosx≤1$ | B. | $?x∉(0,\frac{π}{2}),sinx+cosx>1$ | ||
C. | $?{x_0}∈(0,\frac{π}{2}),sin{x_0}+cos{x_0}≤1$ | D. | $?{x_0}∈(0,\frac{π}{2}),sin{x_0}+cos{x_0}>1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{12}{5}$ | B. | -$\frac{12}{5}$ | C. | $\frac{5}{12}$ | D. | -$\frac{5}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com