分析 求出正切函數(shù)值,(1)化簡所求的表達式為正切函數(shù)的形式,然后求解即可.
(2)利用“1”的代換,化簡所求的表達式為正切函數(shù)的形式,然后求解即可.
解答 解:由已知角α的終邊在直線y=2x上得tanα=2…(3分)
(1)$\frac{2sinα-3cosα}{sinα+cosα}=\frac{2tanα-3}{tanα+1}=\frac{2×2-3}{2+1}=\frac{1}{3}$…(7分)
(2)$\frac{1}{{3{{sin}^2}α-sinαcosα-{{cos}^2}α}}=\frac{{{{sin}^2}α+{{cos}^2}α}}{{3{{sin}^2}α-sinαcosα-{{cos}^2}α}}$=$\frac{{{{tan}^2}α+1}}{{3{{tan}^2}α-tanα-1}}=\frac{{{2^2}+1}}{{3×{2^2}-2-1}}=\frac{5}{9}$…(14分)
點評 本題考查三角函數(shù)的化簡求值,三角函數(shù)的基本關(guān)系式的應(yīng)用,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | -2 | C. | -22 | D. | -27 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}-\frac{1}{2}i$ | B. | -$\frac{1}{2}+\frac{1}{2}i$ | C. | $\frac{1}{2}+\frac{1}{2}i$ | D. | $\frac{1}{2}-\frac{1}{2}i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{12}$個單位 | B. | 向右平移$\frac{π}{12}$個單位 | ||
C. | 向左平移$\frac{π}{3}$個單位 | D. | 向右平移$\frac{π}{3}$個單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,-1] | B. | [-2,1] | C. | [-1,2] | D. | [1,2] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com