3.已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的上方
(1)求圓C的方程;
(2)設(shè)過點(diǎn)P(1,1)的直線l1被圓C截得的弦長等于2$\sqrt{3}$,求直線l1的方程;
(3)過點(diǎn)M(1,0)的直線與圓C交于A,B兩點(diǎn)(A在x軸上方),問在x軸正半軸上是否存在點(diǎn)N,使得x軸平分∠ANB?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

分析 (1)設(shè)出圓心C坐標(biāo),根據(jù)直線l與圓C相切,得到圓心到直線l的距離d=r,確定出圓心C坐標(biāo),即可得出圓C方程;
(2)根據(jù)垂徑定理及勾股定理,由過點(diǎn)P(1,1)的直線l1被圓C截得的弦長等于2$\sqrt{3}$,分直線l1斜率存在與不存在兩種情況求出直線l1的方程即可;
(3)當(dāng)直線AB⊥x軸,則x軸平分∠ANB,當(dāng)直線AB斜率存在時(shí),設(shè)直線AB方程為y=k(x-1),聯(lián)立圓與直線方程,消去y得到關(guān)于x的一元二次方程,利用韋達(dá)定理表示出兩根之和與兩根之積,由若x軸平分∠ANB,則kAN=-kBN,求出t的值,確定出此時(shí)N坐標(biāo)即可.

解答 解:(1)設(shè)圓心C(a,0)(a>-$\frac{5}{2}$),
∵直線l:4x+3y+10=0,半徑為2的圓C與l相切,
∴d=r,即$\frac{|4a+10|}{5}$=2,
解得:a=0或a=-5(舍去),
則圓C方程為x2+y2=4;
(2)由題意可知圓心C到直線l1的距離為$\sqrt{{2}^{2}-(\sqrt{3})^{2}}$=1,
若直線l1斜率不存在,則直線l1:x=1,圓心C到直線l1的距離為1;
若直線l1斜率存在,設(shè)直線l1:y-1=k(x-1),即kx-y+1-k=0,
則有$\frac{|1-k|}{\sqrt{{k}^{2}+1}}$=1,即k=0,此時(shí)直線l1:y=1,
綜上直線l1的方程為x=1或y=1;
(3)當(dāng)直線AB⊥x軸,則x軸平分∠ANB,
若x軸平分∠ANB,則kAN=-kBN,即$\frac{{y}_{1}}{{x}_{1}-t}$+$\frac{{y}_{2}}{{x}_{2}-t}$=0,$\frac{k({x}_{1}-1)}{{x}_{1}-t}$+$\frac{k({x}_{2}-1)}{{x}_{2}-t}$=0,
整理得:2x1x2-(t+1)(x1+x2)+2t=0,即$\frac{2({k}^{2}-4)}{{k}^{2}+1}$-$\frac{2{k}^{2}(t+1)}{{k}^{2}+1}$+2t=0,
解得:t=4,
當(dāng)點(diǎn)N(4,0),能使得∠ANM=∠BNM總成立.

點(diǎn)評(píng) 此題考查了直線與圓的方程的應(yīng)用,涉及的知識(shí)有:垂徑定理,勾股定理,圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式,以及斜率的計(jì)算,熟練掌握定理及公式是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一次考試中,給出了9道考題,要求考生完成6道題,且前五道題中至少要完成3道,則考生選題解答的選法總數(shù)是( 。
A.72B.71C.73D.74

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知拋物線Γ:x2=8y的焦點(diǎn)為F,直線l與拋物線Γ在第一象限相切于點(diǎn)P,并且與直線y=-2及x軸分別交于A、B兩點(diǎn),直線PF與拋物線Γ的另一交點(diǎn)為Q,過點(diǎn)B作BC∥AF交PF于點(diǎn)C,若|PC|=|QF|,則|PF|=(  )
A.$\sqrt{5}$-1B.2$+\sqrt{5}$C.3$+\sqrt{5}$D.5$+\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=2sinx的圖象( 。
A.關(guān)于點(diǎn)($\frac{π}{4}$,0)中心對(duì)稱B.關(guān)于點(diǎn)($\frac{π}{2}$,0)中心對(duì)稱
C.關(guān)于點(diǎn)($\frac{3π}{4}$,0)中心對(duì)稱D.關(guān)于點(diǎn)(π,0)中心對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.把函數(shù)y=ax(0<a<1)的反函數(shù)的圖象向右平移一個(gè)單位得到的函數(shù)圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)集合M={x|0≤x≤2},N={y|0≤y≤2},從M到N有四種對(duì)應(yīng)如圖所示,其中能表示為M到N的函數(shù)關(guān)系的是(  )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)函數(shù)y=4x2-xm的圖象如圖所示,則m的值可能為( 。
A.-2B.1C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)是定義在R上的奇函數(shù),已知x≥0時(shí),f(x)=x(2-x).
(1)求函數(shù)f(x)的解析式.
(2)畫出奇函數(shù)f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=log2x.若a=4b,則f(a)-f(b)=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案