19.已知頂點(diǎn)在原點(diǎn),對稱軸為y軸的拋物線C過點(diǎn)(2,-2).
(1)求拋物線C的方程;
(2)若拋物線C與過點(diǎn)P(0,-1)的直線l相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若直線OA和OB的斜率之和為2,求直線l的方程.

分析 (1)由題意,可設(shè)拋物線方程為x2=-2py,點(diǎn)(2,-2)代入方程可得4=4p,即可求拋物線C的方程;
(2)由題意可得設(shè)直線l的方程為y=kx-1,聯(lián)立直線與拋物線的方程可得:x2+2kx-2=0,根據(jù)韋達(dá)定理可得答案.

解答 解:(1)由題意,可設(shè)拋物線方程為x2=-2py,
將點(diǎn)(2,-2)代入方程可得4=4p,即p=1…(2分)
所以拋物線的方程為x2=-2y.…(4分)
(2)顯然,直線l垂直于x軸不合題意,故可設(shè)所求的直線方程為y=kx-1,
代入拋物線方程化簡,得:x2+2kx-2=0,…(6分)
其中△=4k2+8>0,x1+x2=-2k,x1x2-2…(8分)
設(shè)點(diǎn)A(x1,y1),B(x2,y2),則有$\frac{y_1}{x_1}+\frac{y_2}{x_2}=2$,①
因?yàn)閥1=kx1-1,y2=kx2-1,代入①,整理可得$2k-\frac{{{x_1}+{x_2}}}{{{x_1}{x_2}}}=2$,
將x1+x2=-2k,x1x2-2代入,可得k=2,…(11分)
所以直線l的方程為y=2x-1.…(12分)

點(diǎn)評 本題主要考查拋物線的簡單性質(zhì)、直線的一般式方程、直線與拋物線的位置關(guān)系,以及方程思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.執(zhí)行如圖所示的程序框圖,如果輸入的t∈[-1,2],則輸出的s屬于( 。
A.[0,1]B.[$\frac{3}{4}$,$\sqrt{2}$]C.[0,$\sqrt{2}$]D.[1,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在極坐標(biāo)系中,定點(diǎn)A(2,0),點(diǎn)B在直線$\sqrt{3}$ρcosθ+ρsinθ=0上運(yùn)動(dòng),當(dāng)線段AB最短時(shí),點(diǎn)B的極坐標(biāo)為(1,$\frac{5π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,長方形ABCD中,AB=2,BC=4,以D為圓心的兩個(gè)圓心半圓,半徑分別為1和2,G為大半圓直徑的右端點(diǎn),E為大半圓上的一個(gè)動(dòng)點(diǎn),DE與小半圓交于點(diǎn)F,EM⊥BC,垂足為M,EM與大半圓直徑交于點(diǎn)H,F(xiàn)N⊥EM,垂足為N.
(Ⅰ)設(shè)∠GDE=30°,求MN的長度;
(Ⅱ)求△BMN的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若點(diǎn)P(1,-1)在角φ(-π<φ<0)終邊上,則函數(shù)y=3cos(x+φ),x∈[0,π]的單調(diào)減區(qū)間為[$\frac{π}{4}$,π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列各式中正確的是( 。
A.-$\sqrt{x}$=(-x)${\;}^{\frac{1}{2}}$B.x${\;}^{-\frac{1}{5}}$=-$\root{5}{x}$C.(-x)${\;}^{\frac{2}{3}}$=x${\;}^{\frac{2}{3}}$D.x${\;}^{\frac{2}{6}}$=x${\;}^{\frac{1}{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)$\frac{π}{2}$<α<π,若sin(α+$\frac{π}{6}$)=$\frac{1}{3}$,則cos($\frac{2π}{3}$+α)=(  )
A.-$\frac{2\sqrt{2}}{3}$B.$\frac{2\sqrt{2}}{3}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,0),B(7,0),C(1,2),D為BC的中點(diǎn).
(Ⅰ)求AD所在直線的方程;
(Ⅱ)求△ACD外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知四面體ABCD,$\overrightarrow{DA}$=$\overrightarrow{a}$,$\overrightarrow{DB}$=$\overrightarrow$,$\overrightarrow{DC}$=$\overrightarrow{c}$,點(diǎn)M在棱DA上,$\overrightarrow{DM}$=2$\overrightarrow{MA}$,N為BC中點(diǎn),則$\overrightarrow{MN}$=( 。
A.-$\frac{2}{3}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{c}$B.-$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$C.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$D.$\frac{2}{3}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{c}$

查看答案和解析>>

同步練習(xí)冊答案