10.在△ABC中,角A,B,C所對的對邊長分別為a,b,c,a=$\frac{1}{2}$c+bcosC.
(1)求角B的大;
(2)若S△ABC=$\sqrt{3}$,求b的最小值.

分析 (1)利用正弦定理化簡已知表達(dá)式,求出B的值即可.
(2)由(1)結(jié)論及三角形面積公式可求ac=4,利用余弦定理,基本不等式即可得解.

解答 解:(1)因?yàn)閎cosC+$\frac{1}{2}$c=a.
由正弦定理可知:sinBcosC+$\frac{1}{2}$sinC=sinA,
可得:sinBcosC+$\frac{1}{2}$sinC=sinBcosC+cosBsinC,
因?yàn)椋篶osB=$\frac{1}{2}$,B為三角形內(nèi)角,
所以:B=$\frac{π}{3}$.
(2)∵B=$\frac{π}{3}$,S△ABC=$\sqrt{3}$=$\frac{1}{2}$acsinB=$\frac{\sqrt{3}}{4}$ac,
解得:ac=4,
∴由余弦定理可得:b=$\sqrt{{a}^{2}+{c}^{2}-2accosB}$=$\sqrt{{a}^{2}+{c}^{2}-ac}$≥$\sqrt{2ac-ac}$=$\sqrt{ac}$=2,當(dāng)且僅當(dāng)a=b時(shí)等號成立.
∴b的最小值為2.

點(diǎn)評 本題主要考查了正弦定理,余弦定理,基本不等式的綜合應(yīng)用,考查了三角形的形狀判斷及計(jì)算能力、轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.目標(biāo)函數(shù)z=x-y,在如圖所示的可行域內(nèi)(陰影部分且包括邊界),使z取得最小值的點(diǎn)的坐標(biāo)為(  )
A.(1,1)B.(3,2)C.(5,2)D.(4,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=8,S4=40.?dāng)?shù)列{bn}的前n項(xiàng)和為Tn,且Tn-2bn+3=0,n∈N*
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=$\left\{\begin{array}{l}{{a}_{n},n為奇數(shù)}\\{_{n},n為偶數(shù)}\end{array}\right.$,求數(shù)列{cn}的前2n項(xiàng)和P2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(0,0),B(8,4),C(-2,4).
(1)求證:△ABC是直角三角形;
(2)若△ABC的外接圓截直線4x+3y+m=0所得弦的弦長為6,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.甲、乙兩人連續(xù)6年對農(nóng)村甲魚養(yǎng)殖業(yè)(產(chǎn)量)進(jìn)行調(diào)查,提供了兩個(gè)方面的信息,甲調(diào)查表明,每個(gè)甲魚池平均出產(chǎn)量從第一年1萬只上升到第六年的2萬只.
第1年第2年第3年第4年第5年第6年
每池產(chǎn)量1萬只1.2萬只1.4萬只1.6萬只1.8萬只2萬只
乙調(diào)查表明,甲魚池的個(gè)數(shù)由第一年的30個(gè)減少到第6年的10個(gè).
第1年第2年第3年第4年第5年第6年
魚池個(gè)數(shù)30個(gè)26個(gè)22個(gè)18個(gè)14個(gè)10個(gè)
(1)求第2年全縣產(chǎn)甲魚的總數(shù);
(2)到第6年這個(gè)縣甲魚養(yǎng)殖業(yè)的規(guī)模比第1年是擴(kuò)大了還是縮小了?說明理由.
(3)求哪一年的規(guī)模最大?說明原因.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知雙曲線的一個(gè)焦點(diǎn)坐標(biāo)為(0,2),且過點(diǎn)(1,$\sqrt{3}$),求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=$\frac{\sqrt{4-{x}^{2}}}{|2+x|-2}$是( 。
A.偶函數(shù)B.奇函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)也不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中,與y=x-1為同一函數(shù)的是( 。
A.y=$\sqrt{{{(x-1)}^2}}$B.y=$\root{3}{{{{(x-1)}^3}}}$C.y=$\frac{{{x^2}-1}}{x+1}$D.$y={(\sqrt{x-1})^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=ln$\frac{x}{x-1}$的定義域是(-∞,0)∪(1,+∞).

查看答案和解析>>

同步練習(xí)冊答案