分析 (1)根據(jù)題意,函數(shù)v(x)表達(dá)式為分段函數(shù)的形式,關(guān)鍵在于求函數(shù)v(x)在20≤x≤200時(shí)的表達(dá)式,根據(jù)一次函數(shù)表達(dá)式的形式,用待定系數(shù)法可求得;
(2)先在0≤x≤20上,車流量函數(shù)為增函數(shù),得最大值為v(20)=1200,然后在20≤x≤200上,車流量函數(shù)為二次函數(shù),然后根據(jù)二次函數(shù)的最大值問題解答.
解答 解:(1)由題意:當(dāng)0≤x≤20時(shí),v=60,
當(dāng)20<x≤200時(shí),設(shè)v=kx+b,
根據(jù)題意得,$\left\{\begin{array}{l}{200k+b=0}\\{20k+b=60}\end{array}\right.$,
解得k=-$\frac{1}{3}$,b=$\frac{200}{3}$,
所以,函數(shù)解析式為v=-$\frac{1}{3}$x+$\frac{200}{3}$,
故車流速度v關(guān)于x的解析式為v=$\left\{\begin{array}{l}{60,0≤x≤20}\\{-\frac{1}{3}x+\frac{200}{3},20<x≤200}\end{array}\right.$;
(2)依題并由(1)可得車流量v(x)=60x(0≤x<20),
v(x)=x(-$\frac{1}{3}$x+$\frac{200}{3}$)=-$\frac{1}{3}$(x-100)2+$\frac{10000}{3}$,(20≤x≤200),
當(dāng)0≤x<20時(shí),v(x)為增函數(shù),故當(dāng)x=20時(shí),其最大值為60×20=1200,
當(dāng)20≤x≤200時(shí),當(dāng)x=100時(shí),v(x)最大,最大值為=$\frac{10000}{3}$≈3333,
綜上所述,當(dāng)x=100時(shí),最大值約為3333.
答:(1)函數(shù)v關(guān)于x的解析式為v=$\left\{\begin{array}{l}{60,0≤x≤20}\\{-\frac{1}{3}x+\frac{200}{3},20<x≤200}\end{array}\right.$;
(2)x=100時(shí),最大值約為3333.
點(diǎn)評 本題主要考查一次函數(shù)的應(yīng)用、最值等基礎(chǔ)知識,同時(shí)考查運(yùn)用數(shù)學(xué)知識解決實(shí)際問題的能力,屬于中等題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{4}{5}$ | C. | log23 | D. | 15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 線段OB和OD | B. | 線段BC和CD | C. | 線段BC和BO | D. | 線段OB和CD |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com