17.函數(shù)y=ax+3-2(a>0,a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線$\frac{x}{m}+\frac{y}{n}$=-1上,m>0,n>0,則3m+n的最小值為(  )
A.13B.16C.11+6$\sqrt{2}$D.28

分析 利用指數(shù)型函數(shù)的性質(zhì)可求得定點(diǎn)A(-3,-1),將點(diǎn)A的坐標(biāo)代入$\frac{x}{m}+\frac{y}{n}$=-1,結(jié)合題意,利用基本不等式即可.

解答 解:∵x=-3時(shí),函數(shù)y=ax+3-2(a>0,a≠1)值恒為-1,
∴函數(shù)y=ax+3-2(a>0,a≠1)的圖象恒過定點(diǎn)A(-3,-1),
又點(diǎn)A在直線A在直線$\frac{x}{m}+\frac{y}{n}$=-1上,
∴$\frac{3}{m}$+$\frac{1}{n}$=1,又m,n>0,
∴3m+n=(3m+n)•1
=(3m+n)•($\frac{3}{m}$+$\frac{1}{n}$)
=9+1+$\frac{3n}{m}$+$\frac{3m}{n}$
≥10+2$\sqrt{\frac{3n}{m}•\frac{3m}{n}}$
=16(當(dāng)且僅當(dāng)m=n=4時(shí)取“=”).
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)圖象恒過定點(diǎn),考查基本不等式,求得$\frac{3}{m}$+$\frac{1}{n}$=1是關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.水庫的蓄水量隨時(shí)間而變化,現(xiàn)用t表示時(shí)間,以月為單位,年初為起點(diǎn),根據(jù)歷年數(shù)據(jù),某水庫的蓄水量(單位:億立方米)關(guān)于t的近似函數(shù)關(guān)系式為V(t)=$\left\{\begin{array}{l}{(-{t}^{2}+14t-40){e}^{\frac{1}{t}}+60,0<t≤10}\\{4(t-10)(3t-4)+60,10<t≤12}\end{array}\right.$,該水庫的蓄水量小于60的時(shí)期稱為枯水期.以i-1<t<i表示第i月份(i=1,2,3,…,12),則同一年內(nèi)是枯水期的月份數(shù)是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個(gè)空間幾何體的三視圖如圖,其中正視圖是邊長為2的正三角形,俯視圖是邊長分別為1,2的矩形,則該幾何體的側(cè)面積為( 。
A.$\sqrt{3}$+4B.$\sqrt{3}$+6C.2$\sqrt{3}$+4D.2$\sqrt{3}$+6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.三棱錐的高為3,底面是邊長為3的正三角形,則這個(gè)三棱錐的體積是( 。
A.$\frac{27}{4}$B.$\frac{9}{4}$C.$\frac{27\sqrt{3}}{4}$D.$\frac{9\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-1(x≤0)}\\{{x}^{\frac{1}{2}}(x>0)}\end{array}\right.$,若f(a)>3,則a的取值范圍是(9,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.A、B是半徑為R的球面上的兩點(diǎn),A、B是球面距離是$\frac{πR}{3}$,則過A、B兩點(diǎn)的平面到球心的距離的最大值為$\frac{\sqrt{3}}{2}$R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在每場比賽之前,世界杯組委會(huì)都會(huì)指派裁判員進(jìn)行執(zhí)法.在某場比賽前,有10名裁判可供選擇,其中歐洲裁判3人,亞洲裁判4人,美洲裁判3人.若組委會(huì)要從這10名裁判中任選3人執(zhí)法本次比賽.求:
(1)選出的歐洲裁判人數(shù)多于亞洲裁判人數(shù)的概率;
(2)選出的3人中,歐洲裁判人數(shù)x的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知橢圓E:$\frac{x^2}{4}+\frac{y^2}{2}=1$,直線l交橢圓于A,B兩點(diǎn),若AB的中點(diǎn)坐標(biāo)為($\frac{1}{2}$,-1),則l的方程為( 。
A.2x+y=0B.$x-2y-\frac{5}{2}=0$C.2x-y-2=0D.$x-4y-\frac{9}{2}=0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在平面四邊形ABCD中,∠A=∠B=∠C=75°,BC=3,則AB的取值范圍是($\frac{{3(\sqrt{6}-\sqrt{2})}}{2},\frac{{3(\sqrt{6}+\sqrt{2})}}{2}$).

查看答案和解析>>

同步練習(xí)冊答案