17.在直角坐標(biāo)系xOy中,已知三點(diǎn)A(a,1),B(2,b),C(3,4),若向量$\overrightarrow{OA}$,$\overrightarrow{OB}$在向量$\overrightarrow{OC}$方向上的投影相同,則3a-4b的值是2.

分析 構(gòu)造三個(gè)向量,起點(diǎn)是原點(diǎn),那么三個(gè)向量的坐標(biāo)和點(diǎn)的坐標(biāo)相同,根據(jù)投影的概念,列出等式,用坐標(biāo)表示,移項(xiàng)整理得到結(jié)果.

解答 解:向量$\overrightarrow{OA}$,$\overrightarrow{OB}$在向量$\overrightarrow{OC}$方向上的投影相同,
∴$\overrightarrow{OA}•\overrightarrow{OC}$=$\overrightarrow{OB}$•$\overrightarrow{OC}$,
∵A(a,1),B(2,b),C(3,4),
∴3a+4=6+4b,
∴3a-4b=2,
故答案為:2.

點(diǎn)評(píng) 本題考查了向量的數(shù)量積運(yùn)算、投影,考查了推理能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在${(x-\frac{1}{2x})^6}$的展開(kāi)式中,x4的系數(shù)為( 。
A.-3B.$-\frac{1}{2}$C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={y|y=2x-1,x∈R},B={x|x-x2>0},則A∩B=( 。
A.(-1,+∞)B.(-1,1)C.(-1,0)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥平面ABCD,AB=1,當(dāng)直線PD與平面PBC所成角的正弦值最大時(shí),該幾何體的外接球的體積為$\frac{\sqrt{3}π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求與圓x2+y2+2x-6y+1=0同圓心、半徑為5的圓的一般方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)f(x)=$\frac{(x+1)^{0}}{\sqrt{|x|-x}}$的定義域?yàn)椋ā 。?table class="qanwser">A.{x|x<0,且x≠-1}B.{x|x<0}C.{x|x<-1}D.{x|x≠0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)右焦點(diǎn)為F,右準(zhǔn)線l交x軸于點(diǎn)N,過(guò)橢圓上一點(diǎn)P作PM垂直于準(zhǔn)線l,垂足為M,若PN平分∠FPM,且四邊形OFMP為平行四邊形.證明:e$>\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.平面上到兩定點(diǎn)F1(-7,0)、F2(7,0)的距離之差的絕對(duì)值等于10的點(diǎn)的軌跡方程為$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{24}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.袋中裝有6個(gè)紅球和4個(gè)白球,不放回地一次摸出一個(gè),在第一次摸出紅球的條件下,第二次摸到紅球的概率為( 。
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{1}{10}$D.$\frac{5}{9}$

查看答案和解析>>

同步練習(xí)冊(cè)答案