分析 根據(jù)f(-x)=-f(x),求得a=1,可得 f(x)的解析式,由f(x)>4,可得 $\frac{2}{{2}^{x}-1}$>3 且2x-1>0,由此求得x的范圍.
解答 解:∵函數(shù)f(x)=$\frac{{2}^{x}+1}{{2}^{x}-a}$是奇函數(shù),∴f(-x)=-f(x),即 $\frac{{2}^{-x}+1}{{2}^{-x}-a}$-=$\frac{{2}^{x}+1}{{2}^{x}-a}$,
即 $\frac{1{+2}^{x}}{1-a{•2}^{x}}$=$\frac{1{+2}^{x}}{a{-2}^{x}}$,1-a•2x=a-2x,求得a=1,
∴f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}$=1+$\frac{2}{{2}^{x}-1}$.
由f(x)>4,可得 1+$\frac{2}{{2}^{x}-1}$>4,∴$\frac{2}{{2}^{x}-1}$>3 且2x-1>0,即 1<2x<$\frac{5}{3}$,
求得 0<x<${log}_{2}\frac{5}{3}$,
故答案為:(0,${log}_{2}\frac{5}{3}$ ).
點(diǎn)評(píng) 本題主要考查函數(shù)的奇偶性的應(yīng)用,解指數(shù)不等式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | P甲=P乙 | B. | P甲<P乙 | C. | P甲>P乙 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{8}{9}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>$\sqrt{7}$-2 | B. | 0<a<$\sqrt{7}$-2 | C. | a≥$\sqrt{7}$-2 | D. | 0<a≤$\sqrt{7}$-2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com