分析 已知等式兩邊平方,利用完全平方公式及同角三角函數(shù)間基本關(guān)系化簡,整理求出2sinθcosθ的值,再利用完全平方公式及同角三角函數(shù)間的基本關(guān)系變形求出sinθ+cosθ的值,與已知等式聯(lián)立求出sinθ與cosθ的值,進而求出tanθ的值,原式利用誘導公式化簡后代入計算即可求出值.
解答 解:把sinθ-cosθ=$\frac{1}{5}$①,兩邊平方得:(sinθ-cosθ)2=1-2sinθcosθ=$\frac{1}{25}$,即2sinθcosθ=$\frac{24}{25}$>0,
∵θ∈(0,π),
∴sinθ>0,cosθ>0,即sinθ+cosθ>0,
∴(sinθ+cosθ)2=1+2sinθcosθ=$\frac{49}{25}$,即sinθ+cosθ=$\frac{7}{5}$②,
聯(lián)立①②,解得:sinθ=$\frac{4}{5}$,cosθ=$\frac{3}{5}$,
∴tanθ=$\frac{4}{3}$,
則原式=tanθ=$\frac{4}{3}$,
故答案為:$\frac{4}{3}$.
點評 此題考查了同角三角函數(shù)基本關(guān)系的運用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{5\sqrt{3}}{3}$ | D. | $\frac{4\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 最大值為6 | B. | 最小值為6 | C. | 最大值為36 | D. | 最小值為36 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com