3.已知:(x+1)3=a3x3+a2x2+a1x+a0,則a1+a3=4.

分析 利用立方和公式寫出結(jié)果即可.

解答 解:(x+1)3=a3x3+a2x2+a1x+a0=x3+3x2+3x+1,
可得a1+a3=4.
故答案為:4.

點評 本題考查二項式定理的應(yīng)用,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.一盒中裝有12個同樣大小的球,其中5個紅球,4個黑球,2個白球,1個綠球.從中隨機(jī)取出1個球,則取出的1個球是紅球或黑球或白球的概率為$\frac{11}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.F是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點,過點F且垂直于一條漸近線的直線與另一條漸近線于點B,垂足為A,若2$\overrightarrow{FA}$+$\overrightarrow{FB}$=$\overrightarrow{0}$,則C的離心率e=( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.從集合{0,1,2,3,5}中任取3個不同元素分別作為直線方程Ax+By+C=0中的A,B,C,則所得的經(jīng)過坐標(biāo)原點的直線有12條(結(jié)果用數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知向量$\overrightarrow{a}$=(m,2),$\overrightarrow$=(1,n-1),若$\overrightarrow{a}$⊥$\overrightarrow$,則2m+4n的最小值為( 。
A.2B.2$\sqrt{2}$C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,則x2+y2的取值范圍為[0,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.90本相同的書分給10個學(xué)生,每人至少1本,共有C899種不同的分法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1、F2,若橢圓上存在一點P使得∠F1PF2=90°,且|PF1|是|PF2|和|F1F2|的等差中項,則橢圓的離心率e為(  )
A.$\frac{5}{7}$B.$\frac{2}{3}$C.$\frac{4}{5}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.隨機(jī)變量X的分布列如下,則m=( 。
X1234
P$\frac{1}{4}$m$\frac{1}{3}$$\frac{1}{6}$
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊答案