10.已知A,B,C三點(diǎn)共線,且滿足$\overrightarrow{CA}$=4sinx$\overrightarrow{OB}$+cosx$\overrightarrow{OC}$(O是不同于A,B,C的一點(diǎn)),則cos2x+sin2x=(  )
A.$\frac{7}{17}$B.$\frac{23}{17}$C.-$\frac{23}{17}$D.-$\frac{7}{17}$

分析 滿足$\overrightarrow{CA}$=4sinx$\overrightarrow{OB}$+cosx$\overrightarrow{OC}$(O是不同于A,B,C的一點(diǎn)),可得:$\overrightarrow{OA}$=4sinx$\overrightarrow{OB}$+(1+cosx)$\overrightarrow{OC}$.由于A,B,C三點(diǎn)共線,可得4sinx+1+cosx=1,再利用同角三角函數(shù)基本關(guān)系式、倍角公式即可得出.

解答 解:∵滿足$\overrightarrow{CA}$=4sinx$\overrightarrow{OB}$+cosx$\overrightarrow{OC}$(O是不同于A,B,C的一點(diǎn)),
∴$\overrightarrow{OA}$=4sinx$\overrightarrow{OB}$+(1+cosx)$\overrightarrow{OC}$,
∵A,B,C三點(diǎn)共線,
∴4sinx+1+cosx=1,
可得tanx=$-\frac{1}{4}$.
∴cos2x+sin2x=$\frac{co{s}^{2}x-si{n}^{2}x+2sinxcosx}{si{n}^{2}x+co{s}^{2}x}$=$\frac{1-ta{n}^{2}x+2tanx}{ta{n}^{2}x+1}$=$\frac{1-(-\frac{1}{4})^{2}+2×(-\frac{1}{4})}{(-\frac{1}{4})^{2}+1}$=$-\frac{7}{17}$.
故選:D.

點(diǎn)評(píng) 本題考查了同角三角函數(shù)基本關(guān)系式、倍角公式、向量共線定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合M={x|x+1≥0},N={x|-2<x<2},則M∩N=(  )
A.(-∞,-1]B.(2,+∞)C.(-1,2]D.[-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,在五面體ABCDEF中,四邊形ABCD為正方形,BA⊥平面ADEF,DE⊥AF,AF=1,AD=2$\sqrt{2}$.
(1)求異面直線BF與CD所成角的正弦值;
(2)證明:平面CDE⊥平面ABF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知O為坐標(biāo)原點(diǎn),直線y=2與x2+y2+Dx-4y=0交于兩點(diǎn)M,N,則∠MON=( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.空間中,直線a,b,平面α,β,下列命題正確的是(  )
A.若a∥α,b∥a⇒b∥αB.若a∥α,b∥α,a?β,b?β⇒β∥α
C.若α∥β,b∥α⇒b∥βD.若α∥β,a?α⇒a∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖,三棱錐A-BCD中,AB=AC=BD=CD=3,AD=BC=2,點(diǎn)M,N分別是AD,BC的中點(diǎn),則異面直線AN,CM所成的角的余弦值為( 。
A.$\frac{7}{8}$B.$\frac{3}{4}$C.$\frac{1}{8}$D.$-\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知命題p:函數(shù)f(x)=x2-2mx+4在[2,+∞)上單調(diào)遞增;命題q:關(guān)于x的不等式mx2+2(m-2)x+1>0對(duì)任意x∈R恒成立.若p∨q為真命題,p∧q為假命題,則實(shí)數(shù)m的取值范圍為(  )
A.(1,4)B.[-2,4]C.(-∞,1]∪(2,4)D.(-∞,1)∪(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(x+1)^{2},x≤0}\\{\frac{lnx}{{x}^{2}},x>0}\end{array}\right.$,若函數(shù)y=f(f(x)+m)有五個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(1-$\frac{1}{2e}$,1)∪(-1-$\frac{1}{2e}$,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知關(guān)于x的方程x2+kx+3=0(k∈R)有兩個(gè)虛根α和β,且|α-β|=2$\sqrt{2}$,求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案