15.如圖,三棱錐A-BCD中,AB=AC=BD=CD=3,AD=BC=2,點(diǎn)M,N分別是AD,BC的中點(diǎn),則異面直線AN,CM所成的角的余弦值為( 。
A.$\frac{7}{8}$B.$\frac{3}{4}$C.$\frac{1}{8}$D.$-\frac{7}{8}$

分析 連結(jié)ND,取ND的中點(diǎn)E,連結(jié)ME,推導(dǎo)出異面直線AN,CM所成角就是∠EMC,通解三角形,能求出結(jié)果.

解答 解:連結(jié)ND,取ND的中點(diǎn)E,連結(jié)ME,
則ME∥AN,∴∠EMC是異面直線AN,CM所成的角,
∵AN=2$\sqrt{2}$,∴ME=$\sqrt{2}$=EN,MC=2$\sqrt{2}$,
又∵EN⊥NC,∴EC=$\sqrt{E{N}^{2}+N{C}^{2}}$=$\sqrt{3}$,
∴cos∠EMC=$\frac{E{M}^{2}+M{C}^{2}-E{C}^{2}}{2EM•MC}$=$\frac{2+8-3}{2×\sqrt{2}×2\sqrt{2}}$=$\frac{7}{8}$,
∴異面直線AN,CM所成的角的余弦值為$\frac{7}{8}$.
故選:A.

點(diǎn)評(píng) 本題考查異面直線所成角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.(普通中學(xué)做)過拋物線C:y2=8x焦點(diǎn)的直線與C相交于A,B兩點(diǎn),線段AB的中點(diǎn)為M(3,m),則|AB|=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知命題p:“?x∈R,x2≥0”,則¬p:?x∈R,x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線平行于直線l:x+2y+5=0,雙曲線的一個(gè)焦點(diǎn)在直線l上,則雙曲線的方程為( 。
A.$\frac{{3{x^2}}}{25}-\frac{{3{y^2}}}{100}=1$B.$\frac{{3{x^2}}}{100}-\frac{{3{y^2}}}{25}=1$
C.$\frac{x^2}{20}-\frac{y^2}{5}=1$D.$\frac{x^2}{5}-\frac{y^2}{20}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知A,B,C三點(diǎn)共線,且滿足$\overrightarrow{CA}$=4sinx$\overrightarrow{OB}$+cosx$\overrightarrow{OC}$(O是不同于A,B,C的一點(diǎn)),則cos2x+sin2x=( 。
A.$\frac{7}{17}$B.$\frac{23}{17}$C.-$\frac{23}{17}$D.-$\frac{7}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,若輸入x為13,則輸出y的值為(  )
A.10B.5C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,底面ABC等邊三角形,E,F(xiàn)分別是BC,CC1的中點(diǎn).求證:
(Ⅰ) EF∥平面A1BC1
(Ⅱ) 平面AEF⊥平面BCC1B1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=$\frac{lnx}{\sqrt{2-x}}$的定義域是( 。
A.(0,2)B.k>0C.(0,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下的x,f(x)的對(duì)應(yīng)表:
x123456
f(x)136.1315.552-3.9210.8812.488-23.064
則函數(shù)f(x)存在零點(diǎn)的區(qū)間有( 。
A.區(qū)間[2,3]和[3,4]B.區(qū)間[1,2]和[4,5]
C.區(qū)間[2,3]、[3,4]和[4,5]D.區(qū)間[2,3]、[3,4]和[5,6]

查看答案和解析>>

同步練習(xí)冊(cè)答案