2.在極坐標系下,點M(2,$\frac{π}{3}$)到直線l:ρ(2cosθ+sinθ)=4的距離為$\frac{2\sqrt{5}-\sqrt{15}}{5}$.

分析 把極坐標化為直角坐標,利用點到直線的距離公式即可得出.

解答 解:點M(2,$\frac{π}{3}$)化為直角坐標:M$(1,\sqrt{3})$.
到直線l:ρ(2cosθ+sinθ)=4,化為直角坐標方程:2x+y-4=0,
∴點M到直線l的距離d=$\frac{|2+\sqrt{3}-4|}{\sqrt{5}}$=$\frac{2-\sqrt{3}}{\sqrt{5}}$=$\frac{2\sqrt{5}-\sqrt{15}}{5}$.
故答案為:$\frac{2\sqrt{5}-\sqrt{15}}{5}$.

點評 本題考查了極坐標方程化為直角坐標方程、點到直線的距離公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如表:
商店名稱ABCDE
銷售額x (千萬元)35679
利潤額y (百萬元)23345
(I)畫出散點圖;
(Ⅱ)根據(jù)如下的參考公式與參考數(shù)據(jù),求利潤額y與銷售額x之間的線性回歸方程;
(Ⅲ)若該公司還有一個零售店某月銷售額為11千萬元,試估計它的利潤額是多少?
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{y}$=$\widehat$x+$\widehat{a}$,其中$\sum_{i=1}^{n}{x}_{i}{y}_{i}$=112,$\sum_{i=1}^{n}{{x}_{i}}^{2}$=200)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,已知橢圓C1:$\frac{x^2}{4}$+y2=1,曲線C2:y=x2-1與y軸的交點為M,過坐標原點O的直線l與C2相交于A,B兩點,直線MA,MB分別與C1相交于D,E兩點,直線MA,MB的斜率分別為k1,k2
(1)求k1k2的值;
(2)記△MAB,△MDE的面積分別為S1,S2,若$\frac{S_1}{S_2}$=λ,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知向量$\overrightarrow{OB}$=(2,0),$\overrightarrow{OC}$=(0,2),$\overrightarrow{CA}$=($\sqrt{3}$cosα,$\sqrt{3}$sinα),則$\overrightarrow{OA}$與$\overrightarrow{OB}$夾角的范圍是(  )
A.[$\frac{π}{3}$,$\frac{5π}{6}$]B.[0,$\frac{π}{3}$]C.[$\frac{π}{6}$,$\frac{π}{2}$]D.[$\frac{π}{6}$,$\frac{5π}{6}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.把函數(shù)y=sinx(x∈R)的圖象上所有點的橫坐標縮短到原來的$\frac{1}{3}$倍(縱坐標不變),再把所得圖象上所有點向左平行移動$\frac{π}{3}$個單位長度,得到的圖象所表示的函數(shù)是( 。
A.y=sin($\frac{1}{3}$x+$\frac{π}{3}$),x∈RB.y=sin(3x+$\frac{π}{3}$),x∈RC.y=sin(3x+$\frac{π}{9}$),x∈RD.y=-sin3x,x∈R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.計算${(\frac{{\sqrt{2}i}}{1+i})^{100}}$的結(jié)果為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.如圖,在空間直角坐標系中,正方體ABCD-A1B1C1D1的棱長為1,B1E=$\frac{1}{4}$A1B1,則$\overrightarrow{BE}$=$(0,-\frac{1}{4},1)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知f(x)=|x2-1|+x2+kx,若關(guān)于x的方程f(x)=0在(0,2)上有兩個不相等的實根,則k的取值范圍是( 。
A.(-1,0)B.(-$\frac{7}{2}$,+∞)C.(-∞,-$\frac{7}{2}$)∪(-1,+∞)D.(-$\frac{7}{2}$,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在直角坐標系xOy中,以O(shè)為極點,x軸正半軸為極軸建立直角坐標系,圓C的極坐標方程為$ρ=2\sqrt{2}cos(θ+\frac{π}{4})$,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=t\\ y=-1+2\sqrt{2}t\end{array}\right.$(t為參數(shù)),直線l和圓C交于A,B兩點,P是圓C上不同于A,B的任意一點.
(Ⅰ)求圓C及l(fā)的直角坐標方程;
(Ⅱ)求△PAB面積的最大值.

查看答案和解析>>

同步練習冊答案