分析 把極坐標化為直角坐標,利用點到直線的距離公式即可得出.
解答 解:點M(2,$\frac{π}{3}$)化為直角坐標:M$(1,\sqrt{3})$.
到直線l:ρ(2cosθ+sinθ)=4,化為直角坐標方程:2x+y-4=0,
∴點M到直線l的距離d=$\frac{|2+\sqrt{3}-4|}{\sqrt{5}}$=$\frac{2-\sqrt{3}}{\sqrt{5}}$=$\frac{2\sqrt{5}-\sqrt{15}}{5}$.
故答案為:$\frac{2\sqrt{5}-\sqrt{15}}{5}$.
點評 本題考查了極坐標方程化為直角坐標方程、點到直線的距離公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
商店名稱 | A | B | C | D | E |
銷售額x (千萬元) | 3 | 5 | 6 | 7 | 9 |
利潤額y (百萬元) | 2 | 3 | 3 | 4 | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{π}{3}$,$\frac{5π}{6}$] | B. | [0,$\frac{π}{3}$] | C. | [$\frac{π}{6}$,$\frac{π}{2}$] | D. | [$\frac{π}{6}$,$\frac{5π}{6}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=sin($\frac{1}{3}$x+$\frac{π}{3}$),x∈R | B. | y=sin(3x+$\frac{π}{3}$),x∈R | C. | y=sin(3x+$\frac{π}{9}$),x∈R | D. | y=-sin3x,x∈R |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,0) | B. | (-$\frac{7}{2}$,+∞) | C. | (-∞,-$\frac{7}{2}$)∪(-1,+∞) | D. | (-$\frac{7}{2}$,-1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com