分析 (Ⅰ)由線面垂直得A1O⊥BC,再由BC⊥DC,能證明BC⊥A1D.
(Ⅱ)由BC⊥A1D,A1D⊥A1B,得A1D⊥平面A1BC,由此能證明平面A1BC⊥平面A1BD.
(III)由${V}_{C-{A}_{1}BD}$=${V}_{{A}_{1}-DBC}$,能求出點(diǎn)C到平面A1BD的距離.
解答 證明:(Ⅰ)∵A1O⊥平面DBC,∴A1O⊥BC,
又∵BC⊥DC,A1O∩DC=O,
∴BC⊥平面A1DC,∴BC⊥A1D.
(Ⅱ)∵BC⊥A1D,A1D⊥A1B,BC∩A1B=B,
∴A1D⊥平面A1BC,
又∵A1D?平面A1BD,
∴平面A1BC⊥平面A1BD.
解:(III)設(shè)C到平面A1BD的距離為h,
∵${V}_{C-{A}_{1}BD}$=${V}_{{A}_{1}-DBC}$,
∴$\frac{1}{3}{S}_{△{A}_{1}BD}•h$=$\frac{1}{3}{S}_{△DBC}•{A}_{1}O$,
又∵${S}_{△{A}_{1}BD}$=S△DBC,${A}_{1}O=\frac{6×8}{10}=\frac{24}{5}$,∴$h=\frac{24}{5}$.
∴點(diǎn)C到平面A1BD的距離為$\frac{24}{5}$.
點(diǎn)評(píng) 本題考查異面直線垂直的證明,考查面面垂直的證明,考查點(diǎn)到平面的距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com