11.設(shè)$f(x)=\left\{\begin{array}{l}x+1,(x>0)\\ 1-x,(x=0)\\-1,(x<0)\end{array}\right.$,則f[f(0)]=( 。
A.1B.0C.2D.-1

分析 利用分段函數(shù)的性質(zhì),先求出f(0),再求出f[f(0)].

解答 解:∵$f(x)=\left\{\begin{array}{l}x+1,(x>0)\\ 1-x,(x=0)\\-1,(x<0)\end{array}\right.$,
∴f(0)=1-0=1,
f[f(0)]=f(1)=1+1=2.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意分段函數(shù)的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=loga(x2-3x+2),g(x)=log2(2x2-5x+2)(a>0,且a≠1),若f(x)>g(x),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.要使$\frac{1}{2}$sinθ+$\frac{\sqrt{3}}{2}$cosθ=$\frac{m-6}{2-m}$有意義,則實(shí)數(shù)m的取值范圍是( 。
A.(4,+∞)B.[4,+∞)C.[8,+∞)D.(8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)是定義在R上的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=x2,當(dāng)x>0時(shí),f(x+1)=f(x)+f(1),若直線y=kx與函數(shù)y=f(x)的圖象恰有11個(gè)不同的公共點(diǎn),則實(shí)數(shù)k的取值范圍為($2\sqrt{6}-4$,$4\sqrt{3}-6$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知向量$\overrightarrow a=(x,y)$,若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+5≥0\\ x+y≥0\\ x≤3\end{array}\right.$,則$|{\overrightarrow a}|$的最大值是( 。
A.$\sqrt{73}$B.$\frac{{5\sqrt{2}}}{2}$C.$\sqrt{43}$D.$3\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.使奇函數(shù)$f(x)=\sqrt{3}sin(2x+θ)+cos(2x+θ)$在$[0,\frac{π}{4}]$上為增函數(shù)的θ值為(  )
A.$-\frac{π}{3}$B.$-\frac{π}{6}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ln2x-2aln(ex)+3,x∈[e-1,e2]
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的值域;
(2)若f(x)≤-alnx+4恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)$f(x)=ax-\frac{x}$,曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為3x-y-4=0.
(Ⅰ) 求f(x)的解析式;
(Ⅱ) 證明:曲線f(x)上任一點(diǎn)處的切線與直線x=0和直線y=x所圍成的三角形面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知直線l:3x-y-6=0與圓C:x2+y2-2x-4y=0.求:
(1)截得的弦AB的長;
(2)△AOB面積(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

同步練習(xí)冊(cè)答案