1.已知二項(xiàng)式(2x+1)n的各項(xiàng)系數(shù)和為an,展開式x的系數(shù)為bn,設(shè)Cn=anbn,則數(shù)列{Cn}的前n項(xiàng)的和為Tn,則為T2014(  )
A.1+$\frac{4027}{2}$•32015B.$\frac{3}{2}$+$\frac{4027}{2}$•32015C.1+$\frac{4027}{2}$•32014D.$\frac{3}{2}$+$\frac{4027}{2}$•32014

分析 由條件求得an和bn 的值,可得Cn=anbn的解析式,再利用錯(cuò)位相加法求得數(shù)列{Cn}的前n項(xiàng)的和為Tn的值.

解答 解:令x=1,可得二項(xiàng)式(2x+1)n的各項(xiàng)系數(shù)和為可得an=3n
展開式x的系數(shù)為bn =${C}_{n}^{n-1}$•2=2n,Cn=anbn=2n•3n
由T2014 =2•31+4•32+6•33+…+4028•32014 ①,
可得3•T2014=2•32+4•33+6•34+…+4026•32014+4028•32015 ②,
①-②可得-2T2014=2•31+2•32+2•33+…+2•32014-4028•32015
∴T2014=$\frac{3}{2}$+$\frac{4027}{2}$•32015,
故選:B.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,用錯(cuò)位相加法求數(shù)列的前n項(xiàng)和,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.($\sqrt{x}$+$\frac{a}{{x}^{2}}$)10展開式中的常數(shù)項(xiàng)為180,則a=±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知點(diǎn)P(x,y)的坐標(biāo)滿足條件$\left\{\begin{array}{l}{x≤1}\\{y≤2}\\{2x+y-2>0}\end{array}\right.$,那么(x+1)2+y2的取值范圍為($\frac{16}{5}$,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求f(x)=a•2x-4x(a∈R)在[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x2-a|x-1|,其中a∈R.
(1)若函數(shù)g(x)=f(x)-$\frac{3}{4}$有四個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍:
(2)設(shè)函數(shù)f(x)在區(qū)間[-2,2]上的最大值為g(a),求g(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)直線l1、l2的傾斜角分別為θ1、θ2,斜率分別為k1、k2.且θ12=90°,則k1+k2的最小值為( 。
A.2B.-2C.$\sqrt{2}$D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{(x-1)^{2}+a,x>1}\end{array}\right.$,若關(guān)于x的函數(shù)g(x)=xf(x)-$\frac{1}{2}$只有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.當(dāng)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$時(shí),1≤ax+y≤4恒成立,則實(shí)數(shù)a的取值范圍( 。
A.[1,$\frac{3}{2}$]B.[-1,2]C.[-2,3]D.[1,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)復(fù)數(shù)zn=xn+i•yn,其中xnyn∈R,n∈N*,i為虛數(shù)單位,zn+1=(1+i)•zn,z1=3+4i,復(fù)數(shù)zn在復(fù)平面上對(duì)應(yīng)的點(diǎn)為Zn
(1)求復(fù)數(shù)z2,z3,z4的值;
(2)證明:當(dāng)n=4k+1(k∈N*)時(shí),$\overrightarrow{O{Z_n}}$∥$\overrightarrow{O{Z_1}}$;
(3)求數(shù)列{xn•yn}的前100項(xiàng)之和.

查看答案和解析>>

同步練習(xí)冊(cè)答案