10.已知數(shù)列{an}滿足:an+1=2an,且a1,a2+1,a3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an(n∈N*),試求數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項(xiàng)和Tn

分析 (I)由數(shù)列{an}滿足:an+1=2an,且a1,a2+1,a3成等差數(shù)列.可得:2(a2+1)=a1+a3.解得a1.利用等比數(shù)列的通項(xiàng)公式即可得出an
(II)bn=log2an=n,可得$\frac{1}{_{n}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$.利用“裂項(xiàng)求和”即可得出.

解答 解:(I)∵數(shù)列{an}滿足:an+1=2an,且a1,a2+1,a3成等差數(shù)列.
∴2(a2+1)=a1+a3
∴4a1+2=a1+4a1,解得a1=2.
∴數(shù)列{an}是等比數(shù)列,首項(xiàng)與公比都為2.
∴an=2n
(II)bn=log2an=n,
∴$\frac{1}{_{n}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$.
∴數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項(xiàng)和Tn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$.

點(diǎn)評(píng) 本題考查了遞推關(guān)系、等差數(shù)列與等比數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在等比數(shù)列中,an>0且an+2=an+3an+1,則公比q等于( 。
A.$\frac{3-\sqrt{13}}{2}$B.$\frac{3+\sqrt{13}}{2}$C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.平面上有以O(shè)為圓心,以1為半徑的圓,圓上有三點(diǎn)A,B,C,向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$滿足等式m$\overrightarrow{OA}$+n$\overrightarrow{OB}$=$\overrightarrow{OC}$,這里m,n∈R、mn≠0.
(1)若$\overrightarrow{OA}⊥\overrightarrow{OB}$,證明:m2+n2=1;
(2)若m=n=-1,試判斷△ABC的形狀并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,若輸出的S=$\frac{25}{24}$,則判斷框內(nèi)填入的條件可以是( 。
A.k≥7B.k>7C.k≤8D.k<8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)復(fù)數(shù)z滿足z•i=2-i,i為虛數(shù)單位,
p1:|z|=$\sqrt{5}$,
p2:復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第四象限;
p3:z的共軛復(fù)數(shù)為-1+2i,
p4:z的虛部為2i.
其中的真命題為( 。
A.p1,p3B.p2,p3C.p1,p2D.p1,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R)
(1)證明:直線l恒過(guò)定點(diǎn),并判斷直線l與圓的位置關(guān)系;
(2)當(dāng)直線l被圓C截得的弦長(zhǎng)最短時(shí),求直線l的方程及最短弦的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知關(guān)于x的方程${e^x}+{e^{-x}}-2a{log_2}(|x|+2)+{a^2}=5$有唯一實(shí)數(shù)解,則實(shí)數(shù)a的值為( 。
A.-1B.1C.-1或3D.1或-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的單位長(zhǎng)度,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l的方程為ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$.
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A,B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知變量x,y滿足$\left\{\begin{array}{l}y≤x\\ x+y≥2\\ 2x+y≤6\end{array}\right.$,則z=2x-y的最大值為(  )
A.2B.10C.1D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案