2.偶函數(shù)f(x)滿足:f(x+2)=f(x)對(duì)一切實(shí)數(shù)x成立,且當(dāng)x∈(-2013,-2012)時(shí),f(x)=cos $\frac{π}{2}$x,f(-2012)=a,f(-2013)=b,(a<b).
(1)若△ABC是鈍角三角形,C是鈍角,證明:f(sinA)>f(cosB);
(2)若f(x)的值域是[a,b],求a,b的值,并求方程f(x)=b的解集.

分析 (1)根據(jù)函數(shù)奇偶性和周期性的性質(zhì)結(jié)合三角形的誘導(dǎo)公式進(jìn)行化簡(jiǎn)證明即可.
(2)根據(jù)函數(shù)的單調(diào)性和值域的關(guān)系建立方程進(jìn)行求解即可.

解答 解:(1)x∈(-1,0)時(shí)x-2012∈(-2013,-2012),
f(x)=f(x-2012)=cos $\frac{π}{2}$(x-2012)=cos $\frac{π}{2}$x,
因?yàn)閒(x)是偶函數(shù),所以x∈(0,1)時(shí),f(x)=cos $\frac{π}{2}$x,
f(x)在(0,1)上是減函數(shù),
因?yàn)椤鰽BC是鈍角三角形,C是鈍角,所以0<A<$\frac{π}{2}$-B<$\frac{π}{2}$,
所以0<sin A<cos B<1,所以f(sin A)>f(cos B);
(2)x∈(-1,0)∪(0,1)時(shí)f(x)=cos $\frac{π}{2}$x∈(0,1),
f(0)=f(-2012)=a,f(-1)=f(1)=f(-2013)=b,
若f(x)的值域是[a,b],則a=0,b=1.
方程f(x)=b的解集是{x|x=2k+1,k∈Z }.

點(diǎn)評(píng) 本題主要考查抽象函數(shù)的應(yīng)用,利用函數(shù)奇偶性和周期性的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某人投籃一次投不中的概率是$\frac{1}{3}$,設(shè)投籃5次投中、投不中的次數(shù)分別是ξ、η,則事件“ξ<η”的概率為(  )
A.$\frac{11}{81}$B.$\frac{13}{81}$C.$\frac{15}{81}$D.$\frac{17}{81}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知直線l經(jīng)過點(diǎn)P(-2,1),且點(diǎn)A(-1,-2)到l的距離為1,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的各項(xiàng)均為正數(shù),滿足a1=1,ak+1-ak=ai.(i≤k,k=1,2,3,…,n-1)
(Ⅰ)求證:${a_{k+1}}-{a_k}≥1\begin{array}{l}{\;}{(k=1,2,3,…,n-1)}\end{array}$;
(Ⅱ)若{an}是等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求證:$\frac{1}{2}n(n+1)≤{S_n}≤{2^n}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)是奇函數(shù),若x>0時(shí),f(x)=sinx+cosx,則x<0時(shí),f(x)=sinx-cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)y=$\frac{3sinx+1}{3sinx-1}$的值域是(-∞,$-\frac{1}{4}$]∪[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.復(fù)數(shù)z滿足|z-2+i|=1,則|z+1-2i|的最小值為3$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.據(jù)統(tǒng)計(jì),2015年“雙11”天貓總成交金額突破912億元.某購(gòu)物網(wǎng)站為優(yōu)化營(yíng)銷策略,對(duì)在11月11日當(dāng)天在該網(wǎng)站進(jìn)行網(wǎng)購(gòu)消費(fèi)且消費(fèi)金額不超過1000元的1000名網(wǎng)購(gòu)者(其中有女性800名,男性200名)進(jìn)行抽樣分析.采用根據(jù)性別分層抽樣的方法從這1000名網(wǎng)購(gòu)者中抽取100名進(jìn)行分析,得到下表:(消費(fèi)金額單位:元)
女性消費(fèi)情況:
消費(fèi)金額(0,200)[200,400)[400,600)[600,800)[800,1000]
人數(shù)5101547x
男性消費(fèi)情況:
消費(fèi)金額(0,200)[200,400)[400,600)[600,800)[800,1000]
人數(shù)2310y2
(Ⅰ)計(jì)算x,y的值;在抽出的100名且消費(fèi)金額在[800,1000](單位:元)的網(wǎng)購(gòu)者中隨機(jī)選出兩名發(fā)放網(wǎng)購(gòu)紅包,求選出的兩名網(wǎng)購(gòu)者恰好是一男一女的概率;
(Ⅱ)若消費(fèi)金額不低于600元的網(wǎng)購(gòu)者為“網(wǎng)購(gòu)達(dá)人”,低于600元的網(wǎng)購(gòu)者為“非網(wǎng)購(gòu)達(dá)人”,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫2×2列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過0.010的前提下認(rèn)為“是否為‘網(wǎng)購(gòu)達(dá)人’”與性別有關(guān)?”
女士男士總計(jì)
網(wǎng)購(gòu)達(dá)人50      5   55    
非網(wǎng)購(gòu)達(dá)人301545
總計(jì)8020100
附:
P(k2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879
(${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)y=f(x),若對(duì)于任意x∈R,f(2x)=2f(x)恒成立,則稱函數(shù)y=f(x)具有性質(zhì)P,
(1)若函數(shù)f(x)具有性質(zhì)P,且f(4)=8,則f(1)=2;
(2)若函數(shù)f(x)具有性質(zhì)P,且在(1,2]上的解析式為y=cosx,那么y=f(x)在(1,8]上有且僅有3個(gè)零點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案