13.直線l:x+y+1=0的傾斜角為(  )
A.45°B.135°C.1D.-1

分析 設(shè)直線l:x+y+1=0的傾斜角為θ,則tanθ=-1,θ∈[0°,180°),解出即可.

解答 解:設(shè)直線l:x+y+1=0的傾斜角為θ,
則tanθ=-1,θ∈[0°,180°).
解得θ=135°,
故選:B.

點(diǎn)評(píng) 本題考查了直線的傾斜角與斜率的關(guān)系、三角函數(shù)求值,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AC=BC,M,N分別是棱CC1,AB的中點(diǎn).
(1)求證:CN⊥平面ABB1A1;
(2)求證:CN∥平面AMB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ln(ax2+2x+1).
(I)若f(x)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(2)若f(x)的值域?yàn)镽,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某校高一年級(jí)甲、已兩班準(zhǔn)備聯(lián)合舉行晚會(huì),兩班各派一人先進(jìn)行轉(zhuǎn)盤游戲,勝者獲得一件獎(jiǎng)品,負(fù)者表演一個(gè)節(jié)目.甲班的文娛委員利用分別標(biāo)有數(shù)字1,2,3,4,5,6,7的兩個(gè)轉(zhuǎn)盤(如圖所示),設(shè)計(jì)了一種游戲方案:兩人同時(shí)各轉(zhuǎn)動(dòng)一個(gè)轉(zhuǎn)盤一次,將轉(zhuǎn)到的數(shù)字相加,和為偶數(shù)時(shí)甲班代表獲勝,否則乙班代表獲勝.
(Ⅰ)根據(jù)這個(gè)游戲方案,轉(zhuǎn)到的兩數(shù)之和會(huì)出現(xiàn)哪些可能的情況?
(Ⅱ)游戲方案對(duì)雙方是否公平?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,∠A=60°,$a=\sqrt{6}$,$b=\sqrt{2}$,則△ABC解的情況( 。
A.無解B.有唯一解C.有兩解D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.?dāng)?shù)列{an}滿足Sn=2an+n(n∈N*),則通項(xiàng)公式an=1-2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓C:(x-1)2+y2=4
(1)求過點(diǎn)P(3,3)且與圓C相切的直線l的方程;
(2)已知直線m:x-y+1=0與圓C交于A、B兩點(diǎn),求|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知命題p:“若直線a與平面α內(nèi)兩條直線垂直,則直線a與平面α垂直”,命題q:“存在兩個(gè)相交平面垂直于同一條直線”,則下列命題中的真命題為( 。
A.p∧qB.p∨qC.¬p∨qD.p∧¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,對(duì)稱軸為直線x=1的拋物線交x軸于點(diǎn)A、B,交y軸于點(diǎn)C(0,3),且S△ABC=6.
(1)求此拋物線的解析式;
(2)直線y=kx+1交x軸于點(diǎn)D,交y軸于點(diǎn)E,交拋物線于點(diǎn)F、G,在y軸上是否存在點(diǎn)P,使得以P、C、F、G為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出k的值及點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由;
(3)在(2)的條件下,拋物線上是否存在點(diǎn)Q,使得OQ、AC、BC三條直線所圍成的三角形與△DOE相似?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案