17.設(shè)x,y∈R,集合A={(x,y)|x2-y2=1},B={(x,y)|y=t(x+2)},集合M=A∩B,若M為單元素集,則t值的個(gè)數(shù)是2.

分析 若M為單元素集,則直線y=t(x+2)與雙曲線x2-y2=1的漸近線平行,進(jìn)而得到答案.

解答 解:∵集合A={(x,y)|x2-y2=1},B={(x,y)|y=t(x+2)},
集合M=A∩B為單元素集,
∴直線y=t(x+2)與雙曲線x2-y2=1的漸近線平行,
即t=±1,
故t值的個(gè)數(shù)是2個(gè),
故答案為:2

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是元素與集合關(guān)系的判斷,其中將已知轉(zhuǎn)化為直線y=t(x+2)與雙曲線x2-y2=1的漸近線平行,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=2an-n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足4${\;}^{_{′}-1}$4${\;}^{_{2}-1}$…4${\;}^{_{n}-1}$=(an+1)${\;}^{_{n}}$(n∈N),求證:{bn}是等差數(shù)列;
(3)求證:1007$\frac{2}{3}$<$\frac{{a}_{1}}{{a}_{2}}$+$\frac{{a}_{2}}{{a}_{3}}$+…+$\frac{{a}_{2016}}{{a}_{2017}}$<1008.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知z=2+i,(i是虛數(shù)單位),z的共軛復(fù)數(shù)是$\overline z$,則$|(3-2z)•\overline z|$=( 。
A.5B.25C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2an-2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ) 若bn=anlog2an,Sn=b1+b2+…+bn,求${S_n}-n•{2^{n+1}}+50<0$成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知實(shí)數(shù)x,y滿足不等式組$\left\{{\begin{array}{l}{x≥1}\\{x+y-4≤0}\\{ax-y-2≤0}\end{array}}\right.$,若實(shí)數(shù)$a=\frac{1}{2}$,則不等式組表示的平面區(qū)域的面積為27;若目標(biāo)函數(shù)z=4x+3y的最大值為15,則實(shí)數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知F1,F(xiàn)2是離心率為$\frac{1}{2}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),橢圓C與拋物線y2=4x在第一象限的交點(diǎn)為P,F(xiàn)是拋物線的焦點(diǎn),|PF|=$\frac{5}{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過(guò)點(diǎn)F1的直線l與橢圓C相交于M,N兩點(diǎn),求$\overrightarrow{{F}_{2}M}$$•\overrightarrow{{F}_{2}N}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.化簡(jiǎn):
(1)$\frac{{sin}^{3}(-α)cot(α+π)}{cot(-α+\frac{π}{2})tan(α-3π{)cos}^{2}(α-π)}$;
(2)tan23°+tan37°+$\sqrt{3}$tan23°•tan37°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知a,b,c為不全相等的實(shí)數(shù),P=a2+b2+c2+3,Q=2(a+b+c),那么P與Q的大小關(guān)系是(  )
A.P>QB.P≥QC.P<QD.P≤Q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知向$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=$\overrightarrow{0}$,($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{c}$,$\overrightarrow{a}$⊥$\overrightarrow$,且|$\overrightarrow{a}$|=1,求$\overrightarrow$2+$\overrightarrow{c}$2的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案