12.已知Sn為公比不為1的等比數(shù)列{an}的前n項(xiàng)和,$\frac{{S}_{3}}{{a}_{3}}$=3,則$\frac{{S}_{5}}{{a}_{6}}$等于62.

分析 利用等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q≠1,
∵$\frac{{S}_{3}}{{a}_{3}}$=3,∴$\frac{\frac{{a}_{1}({q}^{3}-1)}{q-1}}{{a}_{1}{q}^{2}}$=3,化為q2+q+1=3q2,解得q=$-\frac{1}{2}$.
則$\frac{{S}_{5}}{{a}_{6}}$=$\frac{\frac{{a}_{1}({q}^{5}-1)}{q-1}}{{a}_{1}{q}^{5}}$=$\frac{{q}^{5}-1}{{q}^{5}(q-1)}$=62.
故答案為:62.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=sin2x-sin2(x-$\frac{π}{6}$),x∈R.
(1)求f(x)的單調(diào)區(qū)間.
(2)若關(guān)于x的方程2f(x)-m+1=0在區(qū)間[-$\frac{π}{3}$,$\frac{π}{4}$]上有兩個(gè)相異的實(shí)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如圖所示,O是正三角形ABC的中心,四邊形AOBE和AOCD均為平行四邊形,則與向量$\overrightarrow{AD}$相等的向量有$\overrightarrow{OC}$;與向量$\overrightarrow{OA}$共線的向量有$\overrightarrow{DC}$和$\overrightarrow{EB}$;與向量$\overrightarrow{OA}$的模相等的向量有$\overrightarrow{OB}$、$\overrightarrow{OC}$、$\overrightarrow{AE}$、$\overrightarrow{AD}$、$\overrightarrow{DC}$和$\overrightarrow{EB}$(填圖中所畫的向量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.求值:$\frac{cos10°-\sqrt{3}sin10°}{sin20°}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知sin4θ+cos4θ=1,則sinθ-cosθ=±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知等差數(shù)列{an}的公差d=2,其前n項(xiàng)和為Sn,數(shù)列{bn}的首項(xiàng)b1=2,其前n項(xiàng)和為Tn,滿足2${\;}^{(\sqrt{{S}_{n}}+1)}$=Tn+2,n∈N*
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{anbn}的前n項(xiàng)和Wn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知角θ的終邊經(jīng)過(guò)點(diǎn)P(-x,-6),且cosθ=-$\frac{3}{5}$,則x=( 。
A.$\frac{9}{2}$B.-$\frac{9}{2}$C.$\frac{2}{9}$D.-$\frac{2}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sinx,0≤x≤\frac{π}{2}}\\{1,\frac{π}{2}≤x≤2}\\{x-1,2≤x≤4}\end{array}\right.$先畫出函數(shù)圖,求在[0,4]上的定積分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.(1)若(x2-1)+(x2+3x+2)i是純虛數(shù)(i為虛數(shù)單位),求實(shí)數(shù)x的值;
(2)已知z的共軛復(fù)數(shù)為$\overline z$,且${({z+\overline z})^2}$$-3z\overline z•i=4-12i$(i為虛數(shù)單位),求復(fù)數(shù)z.

查看答案和解析>>

同步練習(xí)冊(cè)答案