分析 作出不等式對應(yīng)的平面區(qū)域,利用z的幾何意義確定取得最大值的條件,然后利用基本不等式進(jìn)行求則ab的最大值.
解答 解:由z=ax+by(a>0,b>0)得y=-$\frac{a}$x+$\frac{z}$,
∵a>0,b>0,∴直線的斜率-$\frac{a}$<0,
作出不等式對應(yīng)的平面區(qū)域如圖:
平移直線得y=-$\frac{a}$x+$\frac{z}$,由圖象可知當(dāng)直線y=-$\frac{a}$x+$\frac{z}$經(jīng)過點(diǎn)A時(shí),直線y=-$\frac{a}$x+$\frac{z}$的截距最大,此時(shí)z最大.
由 $\left\{\begin{array}{l}{2x-y+2=0}\\{8x-y-4=0}\end{array}\right.$,解得 $\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$,即A(1,4),
此時(shí)目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為16,
即a+4b=16,∴16=a+4b≥2 $\sqrt{4ab}$=4$\sqrt{ab}$,
∴$\sqrt{ab}$≤4,即ab≤16,
當(dāng)且僅當(dāng)a=4b=8,即a=8,b=2時(shí)取等號.
故ab的最大值是16.
點(diǎn)評 本題主要考查線性規(guī)劃的基本應(yīng)用,以及基本不等式的應(yīng)用,利用數(shù)形結(jié)合求出目標(biāo)函數(shù)取得最大值的條件是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{4}{5}$ | C. | log23 | D. | 15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com