【題目】如圖,在正方體中,P,Q,M,N,H,R是各條棱的中點(diǎn).
①直線平面;②;③P,Q,H,R四點(diǎn)共面;④平面.其中正確的個(gè)數(shù)為( )
A.1B.2C.3D.4
【答案】C
【解析】
由平面平面,易證平面,①正確;假設(shè),易證平面,易證,與矛盾,故②錯(cuò)誤;因?yàn)?/span>,故P,Q,H,R四點(diǎn)共面,③正確;欲證平面,只需證明垂直于平面內(nèi)的兩條相交直線的即可,根據(jù)正方體易證.
解:
對(duì)于①,通過觀察,平面平面,所以平面,①正確;
對(duì)于②,假設(shè),顯然,,平面
平面,所以平面,又平面,
所以,與矛盾,故②錯(cuò)誤.
對(duì)于③,因?yàn)?/span>,故P,Q,H,R四點(diǎn)共面,③正確;
對(duì)于④,顯然,,,平面,平面,所以平面,平面,所以,
同理可證,
又,所以平面,故④正確
所有正確的是①③④,
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】產(chǎn)量相同的機(jī)床一和機(jī)床二生產(chǎn)同一種零件,在一個(gè)小時(shí)內(nèi)生產(chǎn)出的次品數(shù)分別記為,,它們的分布列分別如下:
0 | 1 | 2 | 3 | |
0.4 | 0.3 | 0.2 | 0.1 |
0 | 1 | 2 | |
0.2 | 0.6 | 0.2 |
(1)哪臺(tái)機(jī)床更好?請(qǐng)說明理由;
(2)記表示臺(tái)機(jī)床小時(shí)內(nèi)共生產(chǎn)出的次品件數(shù),求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求的取值范圍;
(2)設(shè)兩個(gè)極值點(diǎn)分別為:,,證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)面BB1C1C為菱形,.
(1)求證:B1C⊥AB;
(2)若∠CBB1=60°,AC=BC,且點(diǎn)A在側(cè)面BB1C1C上的投影為點(diǎn)O,求二面角B﹣AA1﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年是我國(guó)垃圾分類逐步凸顯效果關(guān)鍵的一年.在國(guó)家高度重視,重拳出擊的前提下,高強(qiáng)度、高頻率的宣傳教育能有效縮短我國(guó)生活垃圾分類走入世界前列所需的時(shí)間,打好垃圾分類這場(chǎng)“持久戰(zhàn)”,“全民戰(zhàn)”.某市做了一項(xiàng)調(diào)查,在一所城市中學(xué)和一所縣城中學(xué)隨機(jī)各抽取15名學(xué)生,對(duì)垃圾分類知識(shí)進(jìn)行問答,滿分為100分,他們所得成績(jī)?nèi)缦拢?/span>
城市中學(xué)學(xué)生成績(jī)分別為:73 71 83 86 92 70 88 93 73 97 87 88 74 86 85
縣城中學(xué)學(xué)生成績(jī)分別為:60 64 71 91 60 76 72 85 81 72 62 74 73 63 72
(1)根據(jù)上述兩組數(shù)據(jù)在圖中完成兩所中學(xué)學(xué)生成績(jī)的莖葉圖,并通過莖葉圖比較兩所中學(xué)學(xué)生成績(jī)的平均分及分散程度;(不要求計(jì)算出具體值,給出結(jié)論即可)
(2)從城市中學(xué)成績(jī)?cè)?/span>80分以上的學(xué)生中抽取4名,記這4名學(xué)生的成績(jī)?cè)?/span>90分以上的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,P,Q,M,N,H,R是各條棱的中點(diǎn).
①直線平面;②;③P,Q,H,R四點(diǎn)共面;④平面.其中正確的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直棱柱中,底面是菱形,,點(diǎn)F,Q是棱,的中點(diǎn),,是棱,上的點(diǎn),且.
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今年,新型冠狀病毒來勢(shì)兇猛,老百姓一時(shí)間“談毒色變”,近來,有關(guān)喝白酒可以預(yù)防病毒的說法一直在民間流傳,更有人拿出“醫(yī)”字的繁體字“醫(yī)”進(jìn)行解讀為:醫(yī)治瘟疫要喝酒,為了調(diào)查喝白酒是否有助于預(yù)防病毒,我們調(diào)查了1000人的喝酒生活習(xí)慣與最終是否得病進(jìn)行了統(tǒng)計(jì),表格如下:
每周喝酒量(兩) | |||||
人數(shù) | 100 | 300 | 450 | 100 |
規(guī)定:①每周喝酒量達(dá)到4兩的叫常喝酒人,反之叫不常喝酒人;
②每周喝酒量達(dá)到8兩的叫有酒癮的人.
(1)求值,從每周喝酒量達(dá)到6兩的人中按照分層抽樣選出6人,再?gòu)倪@6人中選出2人,求這2人中無有酒癮的人的概率;
(2)請(qǐng)通過上述表格中的統(tǒng)計(jì)數(shù)據(jù),填寫完下面的列聯(lián)表,并通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為是否得病與是否常喝酒有關(guān)?并對(duì)民間流傳的說法做出你的判斷.
常喝酒 | 不常喝酒 | 合計(jì) | |
得病 | |||
不得病 | 250 | 650 | |
合計(jì) |
參考公式:,其中
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣sinx,記f(x)的導(dǎo)函數(shù)為f'(x).
(1)若h(x)=axf'(x)是(0,+∞)上的單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若x∈(0,2π),試判斷函數(shù)f(x)的極值點(diǎn)個(gè)數(shù),并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com