9.設(shè)隨機(jī)事件A在每次試驗(yàn)中出現(xiàn)的概率為$\frac{1}{3}$,則在3次獨(dú)立試驗(yàn)中A至少發(fā)生一次的概率為$\frac{26}{27}$.

分析 由已知條件利用n次獨(dú)立事件中事件A恰好發(fā)生k次的概率計(jì)算公式及對(duì)立事件概率計(jì)算公式能求出在3次獨(dú)立試驗(yàn)中A至少發(fā)生一次的概率.

解答 解:∵隨機(jī)事件A在每次試驗(yàn)中出現(xiàn)的概率為$\frac{1}{3}$,
∴在3次獨(dú)立試驗(yàn)中A至少發(fā)生一次的概率為:
P=1-(1-$\frac{1}{3}$)3=$\frac{26}{27}$.
故答案為:$\frac{26}{27}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意n次獨(dú)立事件中事件A恰好發(fā)生k次的概率計(jì)算公式及對(duì)立事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=loga(x-1),g(x)=loga(3-x)(a>0且a≠1).
(1)求函數(shù)G(x)=f(x)-g(x)的定義域;
(2)探討H(x)=f(x-1)+g(x+1)的奇偶性;
(3)利用對(duì)數(shù)函數(shù)的單調(diào)性,討論不等式f(x)≥g(x)中x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)函數(shù)f(x)在[a,b]上連續(xù),且f(a)<a,f(b)>b,證明至少存在一點(diǎn)ξ∈(a,b),使f(ξ)=ξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知正項(xiàng)數(shù)列{an}滿足a1=2,a2=1,且$\frac{{a}_{n}}{{a}_{n+1}}+\frac{{a}_{n}}{{a}_{n-1}}=2$,則a12=$\frac{1}{6}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知橢圓$\frac{{x}^{2}}{{m}^{2}}+\frac{{y}^{2}}{{n}^{2}}=1(m>n>0)$與雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(α>0,b>0)有相同的焦點(diǎn),點(diǎn)A是兩曲線在第一象限的交點(diǎn),F(xiàn)是它們的右焦點(diǎn),且AF⊥x軸.若橢圓的離心率為$\frac{1}{2}$,則雙曲線的離心率為( 。
A.2B.$\sqrt{5}$C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若sin$\frac{α}{2}$=$\frac{1}{3}$,則cos(π+α)等于( 。
A.-$\frac{7}{9}$B.$\frac{7}{9}$C.-$\frac{5}{9}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.經(jīng)過(guò)點(diǎn)M(4,-1),且與直線y=2垂直的直線方程是x=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知:命題p:?x>1,有x2>1,則命題?p為:?x>1,x2≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知集合A={x|x2-3x+2≤0},函數(shù)f(x)=x2-2ax+1.
(1)當(dāng)a≠0時(shí),解關(guān)于x的不等式f(x)≤3a2+1;
(2)若命題“存在x0∈A,使得f(x0)≤A”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案