20.下列說(shuō)法錯(cuò)誤的是(  )
A.一個(gè)三棱柱可以由一個(gè)三棱錐和一個(gè)四棱錐拼合而成
B.一個(gè)圓臺(tái)可以由兩個(gè)圓臺(tái)拼合而成
C.一個(gè)圓錐可以由兩個(gè)圓錐拼合而成
D.一個(gè)四棱臺(tái)可以由兩個(gè)四棱臺(tái)拼合而成

分析 根據(jù)空間中的幾何體與線、面位置關(guān)系,對(duì)選項(xiàng)中的命題進(jìn)行分析、判斷即可.

解答 解:對(duì)于A,一個(gè)三棱柱可以由一個(gè)三棱錐和一個(gè)四棱錐拼合而成,如圖①所示,

命題正確;
對(duì)于B,一個(gè)圓臺(tái)可以由兩個(gè)圓臺(tái)拼合而成,可以用平行于圓臺(tái)底面的平面截圓臺(tái),得到兩個(gè)圓臺(tái),
所以命題正確;
對(duì)于C,一個(gè)圓錐不能由兩個(gè)圓錐拼合而成,命題錯(cuò)誤.
對(duì)于D,一個(gè)四棱臺(tái)可以由兩個(gè)四棱臺(tái)拼合而成,如圖②所示,
所以命題正確.
故選:C.

點(diǎn)評(píng) 本題考查了空間幾何體結(jié)構(gòu)特征的應(yīng)用問(wèn)題,也考查了數(shù)形結(jié)合的應(yīng)用問(wèn)題,是基礎(chǔ)題目

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.i是虛數(shù)單位,復(fù)數(shù)$\frac{3+4i}{1-2i}$=( 。
A.1+2iB.1-2iC.-1+2iD.-1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)fM(x)的定義域?yàn)閷?shí)數(shù)集R,滿(mǎn)足狄利克雷函數(shù)fM(x)=$\left\{\begin{array}{l}1,x∈M\\ 0,x∉M\end{array}$(M是R的非空真子集),在R上有兩個(gè)非空真子集A,B,且A∩B=∅,則F(x)=$\frac{{{f_{A∪B}}(x)+1}}{{{f_A}(x)+{f_B}(x)+1}}$的值域?yàn)椋ā 。?table class="qanwser">A.(0,$\frac{2}{3}$]B.{1}C.{$\frac{1}{2}$,$\frac{2}{3}$,1}D.[$\frac{1}{3}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={y|y=2x-1,x∈R},B={x|x-x2>0},則A∩B=( 。
A.(-1,+∞)B.(-1,1)C.(-1,0)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在長(zhǎng)為1的線段AB上任取不同于A,B的兩點(diǎn)C,D,則AC+BD>$\frac{1}{2}$的概率為(  )
A.$\frac{3}{8}$B.$\frac{5}{9}$C.$\frac{5}{8}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥平面ABCD,AB=1,當(dāng)直線PD與平面PBC所成角的正弦值最大時(shí),該幾何體的外接球的體積為$\frac{\sqrt{3}π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求與圓x2+y2+2x-6y+1=0同圓心、半徑為5的圓的一般方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)右焦點(diǎn)為F,右準(zhǔn)線l交x軸于點(diǎn)N,過(guò)橢圓上一點(diǎn)P作PM垂直于準(zhǔn)線l,垂足為M,若PN平分∠FPM,且四邊形OFMP為平行四邊形.證明:e$>\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知角α的終邊與單位圓交于點(diǎn)P($\frac{\sqrt{10}}{10}$,$\frac{3\sqrt{10}}{10}$);
(1)分別寫(xiě)出sinα,cosα,tanα的值;
(2)求$\frac{sin(π-α)+2sin(\frac{π}{2}-α)}{cosα}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案