分析 (1)由已知式子和正弦定理可得cosB,可得角B;
(2)由三角函數(shù)公式化簡可得f(x)=$\sqrt{3}sin({2x+\frac{π}{3}})$,由$x∈[{0,\frac{π}{2}}]$可得$2x+\frac{π}{3}∈[{\frac{π}{3},\frac{4π}{3}}]$,結(jié)合三角函數(shù)的圖象可得最值.
解答 解:(1)∵在△ABC中bcosA=(2c+a)cos(π-B),
∴由正弦定理可得sinBcosA=-(2sinC+sinA)cosB,
∴sinBcosA+sinAcosB=-2sinCcosB,
∴sin(A+B)=-2sinCcosB,
∴sinC=-2sinCcosB,
約掉sinC可得$cosB=-\frac{1}{2}$,可得$B=\frac{2π}{3}$;
(2)由三角函數(shù)公式化簡可得:
$f(x)=2cos2x+cos2xcos\frac{2π}{3}+sin2xsin\frac{2π}{3}$
=$\frac{3}{2}cos2x+\frac{{\sqrt{3}}}{2}sin2x$=$\sqrt{3}sin({2x+\frac{π}{3}})$
∵$x∈[{0,\frac{π}{2}}]$,∴$2x+\frac{π}{3}∈[{\frac{π}{3},\frac{4π}{3}}]$,
∴當(dāng)$2x+\frac{π}{3}=\frac{4π}{3}$即$x=\frac{π}{2}$時(shí),函數(shù)取最小值$f(x)=\sqrt{3}•({-\frac{{\sqrt{3}}}{2}})=-\frac{3}{2}$
∴函數(shù)f(x)在區(qū)間$[{0,\frac{π}{2}}]$上的最小值為$-\frac{3}{2}$,此時(shí)$x=\frac{π}{2}$.
點(diǎn)評 本題考查正余弦定理解三角形,涉及三角函數(shù)的最值,屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c>a>b | B. | b>a>c | C. | a>b>c | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3-i | B. | -3+i | C. | -3-i | D. | 3+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{14}$ | B. | $\frac{3}{8}$ | C. | $\frac{27}{56}$ | D. | $\frac{55}{56}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com