A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 由(1+z)(1+2i)=i,得到$z=\frac{-1-i}{1+2i}$,再利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,求出復(fù)平面內(nèi)表示復(fù)數(shù)z的點的坐標,則答案可求.
解答 解:由(1+z)(1+2i)=i,
得$z=\frac{-1-i}{1+2i}=\frac{(-1-i)(1-2i)}{(1+2i)(1-2i)}=\frac{-3+i}{5}$=$-\frac{3}{5}+\frac{1}{5}i$,
則復(fù)平面內(nèi)表示復(fù)數(shù)z的點的坐標為:($-\frac{3}{5}$,$\frac{1}{5}$),位于第二象限.
故選:B.
點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\sqrt{2}$-1,$\sqrt{2}$-1) | B. | (-$\sqrt{2}$-1,1) | C. | (1,+∞) | D. | (-$\sqrt{2}$-1,$\sqrt{2}$-1)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 5或6 | D. | 6或7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | $±\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com