分析 由正弦定理得$\frac{a}{sinA}=\frac{sinB}=\frac{a+b}{sinA+sinB}$=4,由a=2、b=2$\sqrt{3}$求出sinA、sinB,根據(jù)邊角關(guān)系和特殊角的正弦值求出A、B,利用內(nèi)角和定理求出C,即可求出邊c的值.
解答 解:由正弦定理得,$\frac{a}{sinA}=\frac{sinB}=\frac{a+b}{sinA+sinB}$=4,
因?yàn)閍=2,b=2$\sqrt{3}$,
所以sinA=$\frac{1}{2}$,sinB=$\frac{\sqrt{3}}{2}$,
又a<b,則A=$\frac{π}{6}$,所以B=$\frac{π}{3}$或$\frac{2π}{3}$,
當(dāng)B=$\frac{π}{3}$時(shí),C=π-A-B=$\frac{π}{2}$,則c=$\sqrt{{a}^{2}+^{2}}$=4;
當(dāng)B=$\frac{2π}{3}$時(shí),C=π-A-B=$\frac{π}{6}$,則c=a=2,
所以邊c的長是2或4.
點(diǎn)評 本題考查正弦定理,用內(nèi)角和定理,以及邊角關(guān)系和特殊角的正弦值,熟練掌握定理是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2n-3 | B. | 2n-2 | C. | 2n-1 | D. | 2n-2+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com