13.已知某幾何體的三視圖如圖所示,其中俯視圖中圓的直徑為4,該幾何體的體積為$\frac{16π}{3}$

分析 幾何體為圓柱挖去一個圓錐,根據(jù)三視圖可得圓錐與圓柱的底面直徑都為4,高都為2,把數(shù)據(jù)代入圓錐與圓柱的體積公式計算可得答案.

解答 解:由三視圖知:幾何體為圓柱挖去一個圓錐,且圓錐與圓柱的底面直徑都為4,高為2,
∴幾何體的體積V1=π×22×2-$\frac{1}{3}$×π×22×2=$\frac{16π}{3}$.
故答案為:$\frac{16π}{3}$.

點評 本題考查的知識點是由三視圖求體積和表面積,解決本題的關(guān)鍵是得到該幾何體的形狀.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知x,y滿足約束條件,$\left\{\begin{array}{l}{y≤1}\\{x+y-2≥0}\\{x-y-1≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x-y的最大值為(  )
A.1B.3C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=sin(ωx+ϕ),(ω>0,-π<ϕ<0)的兩個相鄰的對稱中心分別為($\frac{π}{8}$,0),$(\frac{5π}{8},0)$
(1)求f(x)的解析式;
(2)求函數(shù)f(x)圖象的對稱軸方程;
(3)用五點法作出函數(shù)f(x)在[0,π]上的簡圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.等比數(shù)列{an}前n項和為Sn=a+($\frac{1}{3}$)n,n∈N*,則$\lim_{n→∞}$(a1+a3+a5+…+a2n-1)=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.給出下列四個命題:
①當(dāng)x>0且x≠1時,有l(wèi)nx+$\frac{1}{lnx}$≥2;
②△ABC中,sinA>sinB當(dāng)且僅當(dāng)A>B;
③已知Sn是等差數(shù)列{an}的前n項和,若S7>S5,則S9>S3;
④函數(shù)y=f(1+x)與函數(shù)y=f(1-x)的圖象關(guān)于直線x=1對稱.
其中正確命題的序號為②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.有4個命題:
(1)三點確定一個平面.
(2)梯形一定是平面圖形.
(3)平行于同一條直線的兩直線平行.
(4)垂直于同一直線的兩直線互相平行.
其中正確命題的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.△ABC中,已知3acosC=2ccosA,tanA=$\frac{1}{3}$,則B=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=cos(2x-$\frac{4π}{3}$)+2cos2x,
(Ⅰ)求f(x)的最大值,并寫出使f(x)取最大值時x的集合;
(Ⅱ)已知△ABC中,角A、B、C的對邊分別為a、b、c,若f(B+C)=$\frac{3}{2}$,b+c=2,a=1,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線y=x+1交橢圓${x^2}+\frac{y^2}{2}=1$于A、B兩點,則弦AB的長為( 。
A.$\frac{{\sqrt{2}}}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$\frac{{4\sqrt{2}}}{3}$D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案