5.已知向量$\overrightarrow{AB}$=(-4,-3,-1),把$\overrightarrow{AB}$按向量(2,1,1)平移后所得向量是(-4,-3,-1).

分析 由于向量無(wú)論怎樣平移都不變,即可得出.

解答 解:由于向量無(wú)論怎樣平移都不變,因此把$\overrightarrow{AB}$按向量(2,1,1)平移后所得向量仍然是$\overrightarrow{AB}$.
故答案為:(-4,-3,-1).

點(diǎn)評(píng) 本題考查了向量平移的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,Sn=$\frac{{a}_{1}({3}^{n}-1)}{2}$(對(duì)n≥1恒成立)且a4=54,則an=$\frac{2}{3}•{3}^{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)計(jì)求函數(shù)y=ax2+bx+c(a>0)的最小值的算法,并畫(huà)出這個(gè)算法的程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,$\frac{π}{2}$)上單調(diào)遞增的函數(shù)是( 。
A.y=-sinxB.y=-cosxC.y=sin2xD.y=cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知$\overrightarrow{a}$=(2,1),$\overrightarrow$=(1,-2),則$\overrightarrow{a}$+$\overrightarrow$=(3,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=($\frac{1}{3}$)x+1.
(1)求f(x)在R上的解析式;
(2)畫(huà)出f(x)的圖象;
(3)根據(jù)圖象指出函數(shù)f(x)的值域和單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)正數(shù)x,y滿足$\sqrt{x}$+$\sqrt{y}$≤a•$\sqrt{x+y}$恒成立,則a的最小值是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=2sin(π-x)cosx.
(1)將f(x)化為Asin(ωx+Φ)的形式(A>0,ω>0);
(2)求f(x)的最小正周期;
(3)求f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函政f(x)=1g(9-3x)的定義域?yàn)锳,g(x)=($\frac{1}{2}$)x(-1≤x≤0)的值域?yàn)锽.
(1)求集合A∩B;
(2)設(shè)集合C={x|(x-a)(x-a-2)≤0,a∈R}.若B∩C=B,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案