16.設(shè)計(jì)求函數(shù)y=ax2+bx+c(a>0)的最小值的算法,并畫出這個(gè)算法的程序框圖.

分析 算法步驟用自然語(yǔ)言,根據(jù)算法,畫出程序框圖.

解答 解:算法步驟用自然語(yǔ)言敘述如下:
第一步,輸入a,b,c;
第二步:計(jì)算m=$\frac{4ac-^{2}}{4a}$.
第三步:輸出函數(shù)最小值是m.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是設(shè)計(jì)程序框圖解決實(shí)際問題,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)數(shù)列an=min{k+$\frac{n}{4k}$|k∈N*),定義“優(yōu)數(shù)列”:△an=an-[an](n=1,2,…),其中[x]表示不超過x的最大整數(shù).(1)求a1,a2,a3,a4的值;
(2)探究數(shù)列{an}的單調(diào)性;
(3)探究?jī)?yōu)數(shù)列:△a1,△a2,…,△a2015中等于0的項(xiàng)的個(gè)數(shù);
(4)設(shè)Sn=△a1+△a2+…+△an為優(yōu)數(shù)列的前n項(xiàng)和,試求S2015的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知P為直線y=kx+b上一動(dòng)點(diǎn),若點(diǎn)P與原點(diǎn)均在直線x-y+2=0的同側(cè),則k,b滿足的條件分別為( 。
A.k=1,b<2B.k=1,b>2C.k≠1,b<2D.k≠1,b>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知拋物線y=-x2+ax+$\frac{1}{2}$與直線y=2x.
(1)求證:拋物線與直線相交;
(2)設(shè)直線與拋物線的交點(diǎn)分別為A,B,當(dāng)a∈(1,4)時(shí),求線段AB長(zhǎng)度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在△ABC中,tanA=$\frac{1}{2}$,tanB=$\frac{1}{3}$,最長(zhǎng)邊為1,求最短邊及面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)直線l:ρcosθ+$\sqrt{3}$ρsinθ=2$\sqrt{2}$與圓C:ρ=2交于A、B兩點(diǎn).
(Ⅰ)求A、B兩點(diǎn)的極坐標(biāo);
(Ⅱ)設(shè)P是圓C上的動(dòng)點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.a(chǎn),b,c,d成等比數(shù)列,a+b,b+c,c+d均不為零,求證:a+b,b+c,c+d成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知向量$\overrightarrow{AB}$=(-4,-3,-1),把$\overrightarrow{AB}$按向量(2,1,1)平移后所得向量是(-4,-3,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè){an}的公比q的等比數(shù)列.
(1)推導(dǎo){an}的前n項(xiàng)和公式;
(2)設(shè)q≠1,證明數(shù)列{an+1}不是等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案