16.若角45°的終邊上有一點(diǎn)(4,a),則a的值是4.

分析 直接利用三角函數(shù)的定義,即可求出m的值.

解答 解:因?yàn)?5°角的終邊上有一點(diǎn)為(4,a),
所以tan45°=$\frac{a}{4}$=1,
所以a=4.
故答案為:4.

點(diǎn)評(píng) 本題考查三角函數(shù)的定義,考查計(jì)算能力,正確運(yùn)用利用三角函數(shù)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某服裝廠平均每小時(shí)大約生產(chǎn)服裝362件,要求質(zhì)檢員每小時(shí)抽取40件服裝檢驗(yàn)其質(zhì)量狀況,請(qǐng)用系統(tǒng)抽樣的方法設(shè)計(jì)一個(gè)抽樣方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.給出下列五種說(shuō)法:
(1)函數(shù)y=ax(a>0,a≠1)與函數(shù)y=x2的定義域相同;
(2)函數(shù)y=$\sqrt{x}$與函數(shù)y=lnx的值域相同;
(3)函數(shù)y=log3(x2-2x-3)的單調(diào)增區(qū)間是[1,+∞);
(4)函數(shù)y=$\frac{1}{2}+\frac{1}{{{2^x}-1}}$與y=$\frac{{{{(1+{2^x})}^2}}}{{x•{2^x}}}$都是奇函數(shù);
(5)記函數(shù)f(x)=x-[x](注:[x]表示不超過(guò)x的最大整數(shù),例如:[3.2]=3,[-2.3]=-3),則f(x)的值域是[0,1).其中所有正確的序號(hào)是(1)(4)(5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.命題“?n0∈N*,f(n)∈N*且f(n0)>n0的否定形式為(  )
A.?n∈N*,f(n)∉N*或f(n)≤nB.?n∈N*,f(n)∉N*且f(n)>n
C.?n0∈N*,f(n0)∉N*且f(n0)>n0D.?n∈N*,f(n)∉N*且f(n)>n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若變量x,y滿足約束條件$\left\{\begin{array}{l}y≤2x\\ x+y≥1\\ y≥-1\end{array}\right.$,則x+2y的最小值是( 。
A.$-\frac{5}{2}$B.0C.$\frac{5}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知數(shù)列{an}的前n項(xiàng)和${S_n}=2{a_n}-1,n∈{N^*}$,則{an}的通項(xiàng)公式為an=2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在y軸上的截距為2,且與直線y=-3x-4垂直的直線的斜截式方程為(  )
A.$y=\frac{1}{3}x+2$B.$y=-\frac{1}{3}x-2$C.y=-3x+2D.y=3x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.下列命題:
(1)y=|cos(2x+$\frac{π}{6}$)|最小正周期為π;
(2)函數(shù)y=tan$\frac{x}{2}$的圖象的對(duì)稱中心是(kπ,0),k∈Z;
(3)f(x)=tanx-sinx在(-$\frac{π}{2}$,$\frac{π}{2}$)上有3個(gè)零點(diǎn);
(4)若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow∥\overrightarrow{c}$,則$\overrightarrow{a}∥\overrightarrow{c}$
其中錯(cuò)誤的是(1)(3)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.化簡(jiǎn)求值:已知α為第三象限角,且$cos(α-\frac{π}{2})=-\frac{1}{5}$,求$\frac{sin(2π-α)cos(π+α)tan(π-α)}{tan(π+α)sin(π-α)}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案