2.若向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(1,-1),則向量2$\overrightarrow{a}$-$\overrightarrow$的模|2$\overrightarrow{a}$-$\overrightarrow$|=(  )
A.3$\sqrt{2}$B.-3$\sqrt{2}$C.2$\sqrt{3}$D.-2$\sqrt{3}$

分析 求出2$\overrightarrow{a}$-$\overrightarrow$的坐標(biāo),代入模長公式計(jì)算.

解答 解:2$\overrightarrow{a}$-$\overrightarrow$=(3,3),
∴|2$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{{3}^{2}+{3}^{2}}=3\sqrt{2}$.
故選:A.

點(diǎn)評 本題考查了平面向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知c為實(shí)數(shù),對于實(shí)數(shù)p,q定義運(yùn)算“*”,p*q=$\left\{\begin{array}{l}{{p}^{2}+cq-{c}^{2}(p≥q)}\\{-\frac{1}{2}{p}^{2}+cq+\frac{1}{2}{c}^{2}(p<q)}\end{array}\right.$且函數(shù)f(x)=(2x-c)*x
(1)若c=$\frac{1}{3}$,且方程f(x)=d恰有三個(gè)不相等的實(shí)根,求實(shí)數(shù)d的取值范圍
(2)若c>0,且函數(shù)f(x)在區(qū)間(a,b)上既有最大值又有最小值,試分別求出a,b的取值范圍(用c表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將除顏色外完全相同的一個(gè)白球、一個(gè)黃球、兩個(gè)紅球分給三個(gè)小朋友,且每個(gè)小朋友至少分得一個(gè)球的分法有 (  )種.
A.15B.18C.21D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=asin3x+btanx+1滿足f(5)=7,則f(-5)=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知橢圓的焦點(diǎn)為F1(0,-4)和F2(0,4)且點(diǎn)P($\sqrt{5}$,-3$\sqrt{3}$)在橢圓上,那么橢圓的標(biāo)準(zhǔn)方程式:$\frac{{y}^{2}}{36}$+$\frac{{x}^{2}}{20}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,已知A+C=2B,且sinAsinC=cos2B,S△ABC=4$\sqrt{3}$,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,角A、B、C所對的邊分別為a,b,c,且3bcosC-3ccosB=a,則tan(B-C)的最大值為$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知向量$\overrightarrow{m}$=(2,-4),$\overrightarrow{n}$=(a,1)(a∈R)相互垂直,則|$\overrightarrow{n}$|的值為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.執(zhí)行如圖的程序,若輸出的值為2,則輸入的值構(gòu)成的集合是( 。
A.{2}B.{1,2,-1,-2}C.{1,-1}D.{2,-2}

查看答案和解析>>

同步練習(xí)冊答案