17.對(duì)于數(shù)列{an}與{bn},若對(duì)數(shù)列{cn}的每一項(xiàng)cn,均有ck=ak或ck=bk,則稱(chēng)數(shù)列{cn}是{an}與{bn}的一個(gè)“并數(shù)列”.
(1)設(shè)數(shù)列{an}與{bn}的前三項(xiàng)分別為a1=1,a2=3,a3=5,b1=1,b2=2,b3=3,若{cn}是{an}與{bn}一個(gè)“并數(shù)列”求所有可能的有序數(shù)組(c1,c2,c3);
(2)已知數(shù)列{an},{cn}均為等差數(shù)列,{an}的公差為1,首項(xiàng)為正整數(shù)t;{cn}的前10項(xiàng)和為-30,前20項(xiàng)的和為-260,若存在唯一的數(shù)列{bn},使得{cn}是{an}與{bn}的一個(gè)“并數(shù)列”,求t的值所構(gòu)成的集合.

分析 (1)利用“并數(shù)列”的定義即可得出.
(2)利用等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式可得an,公差d,cn,通過(guò)分類(lèi)討論即可得出.

解答 解:(1)(1,2,3),(1,2,5),(1,3,3),(1,3,5);
(2)an=t+n-1,
設(shè){cn}的前10項(xiàng)和為T(mén)n,T10=-30,T20=-260,得d=-2,c1=6,所以cn=8-2n;ck=ak或ck=bk.$當(dāng){c_k}={a_k}時(shí),8-2k=t+k-1,t=9-3k∈{N^*},k∈{N^*}$,
∴k=1,t=6;或k=2,t=3,
所以k≥3.k∈N*時(shí),ck=bk,
∵數(shù)列{bn}唯一,所以只要b1,b2唯一確定即可.
顯然,t=6,或t=3時(shí),b1,b2不唯一,
$\begin{array}{l}t∈{N^*}且t≠3,t≠6,\\ 即\left\{t\right.\left|{t∈{N^*}}\right.且t≠3,\left.{t≠6}\right\}\end{array}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、分類(lèi)討論方法、新定義,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知復(fù)數(shù)z(1+i)=2i,則|z|等于$\sqrt{2}$;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)f(x)=|x-3|-|x+a|,其中a∈R.
(Ⅰ)當(dāng)a=2時(shí),解不等式f(x)<1;
(Ⅱ)若對(duì)于任意實(shí)數(shù)x,恒有f(x)≤2a成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知變量x、y滿(mǎn)足的不等式組$\left\{\begin{array}{l}x≥0\\ 2x-y≤0\\ kx-y+1≥0\end{array}\right.$表示的平面區(qū)域是一個(gè)直角三角形,則實(shí)數(shù)k=( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.0D.0或-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=2sin(2x+φ)(|φ|<$\frac{π}{2}}$)圖象過(guò)點(diǎn)(0,$\sqrt{3}}$),則f(x)圖象的一個(gè)對(duì)稱(chēng)中心是( 。
A.$(-\frac{π}{3},0)$B.$(-\frac{π}{6},0)$C.$(\frac{π}{6},0)$D.$(\frac{π}{12},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a2<0,且1,a2,81成等比數(shù)列,a3+a7=-6.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求{$\frac{{S}_{n}}{n}$}的前n項(xiàng)和Tn取得最小值時(shí)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)計(jì)一個(gè)算法,求1×3+3×5+5×7+…+(2n-1)×(2n+1)>2016成立的最小正整數(shù)n,試畫(huà)出算法的程序框圖并寫(xiě)出對(duì)應(yīng)的程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x.
(1)求f(x)的對(duì)稱(chēng)中心;
(2)若關(guān)于x的方程f(x)-m=2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上有二解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.給出下列幾種說(shuō)法:
①若非零向量$\overrightarrow{a}$與$\overrightarrow$共線,則$\overrightarrow{a}$=$\overrightarrow$;
②若向量$\overrightarrow{a}$與$\overrightarrow$同向,且|$\overrightarrow{a}$|>|$\overrightarrow$|,則$\overrightarrow{a}$>$\overrightarrow$;
③若兩向量有相同的基線,則兩向量相等;
④若$\overrightarrow{a}$$∥\overrightarrow$,$\overrightarrow∥\overrightarrow{c}$,則$\overrightarrow{a}∥\overrightarrow{c}$
其中錯(cuò)誤說(shuō)法的序號(hào)是①②③④.

查看答案和解析>>

同步練習(xí)冊(cè)答案