15.設(shè)定義域?yàn)椋?,+∞)的單調(diào)函數(shù)f(x),對任意的x∈(0,+∞),都有f[f(x)-log3x]=4,若x0是方程f(x)-2f'(x)=3的一個(gè)解,且${x_0}∈(a,a+1),a∈{N^*}$,則實(shí)數(shù)a=2.

分析 令t=f(x)-log3x,則f(x)=t+log3x,f(t)=4,解出t得到f(x)的解析式,令g(x)=f(x)-2f'(x)-3,計(jì)算g(a)的值,a∈N,根據(jù)零點(diǎn)的存在性定理得出答案.

解答 解:令t=f(x)-log3x,則f(x)=t+log3x,
∵f[f(x)-log3x]=4,∴f(t)=4,即t+log3t=4,解得t=3.
∴f(x)=3+log3x,f′(x)=$\frac{1}{xln3}$,
令g(x)=f(x)-2f'(x)-3=log3x-$\frac{2}{xln3}$,則g′(x)=$\frac{1}{xln3}+\frac{2}{{x}^{2}ln3}$=$\frac{1}{xln3}(1+\frac{2}{x})$>0.
∴g(x)在(0,+∞)上是增函數(shù).
∵g(2)=log32-$\frac{1}{ln3}$=log32-log3e=log3$\frac{2}{e}$<0,g(3)=1-$\frac{2}{3ln3}$>0,
∴g(x)在(2,3)上存在唯一一個(gè)零點(diǎn),即2<x0<3.
故答案為2.

點(diǎn)評 本題考查了函數(shù)單調(diào)性,零點(diǎn)的存在性定理,求出f(x)的解析式是解題關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)f(x)=$\frac{1}{1+{2}^{x}}$.
(1)求f(a)+f(-a)的值;
(2)求f(-100)+f(-99)+…+f(-1)+f(0)+f(1)+…+f(100)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,三棱錐P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E為PC的中點(diǎn),點(diǎn)F在PA上,且2PF=FA.
(1)求證:BE⊥平面PAC; 
(2)求直線AB與平面BEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某市在“國際禁毒日”期間,連續(xù)若干天發(fā)布了“珍愛生命,原理毒品”的電視公益廣告,期望讓更多的市民知道毒品的危害性,禁毒志愿者為了了解這則廣告的宣傳效果,隨機(jī)抽取了100名年齡階段性在[10,20),[20,30),[30,40),[40,50),[50,60)的市民進(jìn)行問卷調(diào)查,由此得到樣本頻率分布直方圖如圖所示.
(Ⅰ)求隨機(jī)抽取的市民中年齡段在[30,40)的人數(shù);
(Ⅱ)從不小于40歲的人中按年齡段分層抽樣的方法隨機(jī)抽取5人,求[50,60)年齡段抽取的人數(shù);
(Ⅲ)從(Ⅱ)中方式得到的5人中再抽取2人作為本次活動(dòng)的獲獎(jiǎng)?wù)撸骩50,60)年齡段僅1人獲獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.六個(gè)人從左到右排成一列,其中甲、乙兩人至少有一人在兩端的排法總數(shù)有( 。
A.48種B.384種C.432種D.288種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)等差數(shù)列{an}滿足a2=7,a4=3,Sn是數(shù)列{an}的前n項(xiàng)和,則使得Sn>0最大的自然數(shù)n是(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)x,y滿足約束條件:$\left\{{\begin{array}{l}{x,y≥0}\\{x-y≥-1}\\{x+y≤3}\end{array}}\right.$,若z=x-y,則z的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)$f(x)=sin({2x-\frac{π}{4}})({x∈R})$的單調(diào)遞增區(qū)間是[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)集合A={x||x-2|≤2,x∈R},B={x|-1≤x≤2},則∁R(A∩B) 等于( 。
A.{x|-1<x<0}B.{x|2≤x<4}C.{x|x<0或x>2}D.{x|x≤0或x≥2}

查看答案和解析>>

同步練習(xí)冊答案