16.對a,b∈R,記max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a>b}\end{array}\right.$,則函數(shù)f(x)=max{|x+1|,x+2}(x∈R)的最小值是$\frac{1}{2}$.

分析 討論當(dāng)|x+1|≥x+2,|x+1|<x+2時,求出f(x)的解析式,由單調(diào)性可得最小值.

解答 解:當(dāng)|x+1|≥x+2,即x+1≥x+2或x+1≤-x-2,
解得x≤-$\frac{3}{2}$時,f(x)=|x+1|,遞減,
則f(x)的最小值為f(-$\frac{3}{2}$)=|-$\frac{3}{2}$+1|=$\frac{1}{2}$;
當(dāng)|x+1|<x+2,可得x>-$\frac{3}{2}$時,f(x)=x+2,遞增,
即有f(x)>$\frac{1}{2}$,
綜上可得f(x)的最小值為$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點評 本題考查函數(shù)的最值的求法,考查絕對值不等式的解法,注意運用分類討論的思想方法,以及函數(shù)的單調(diào)性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.$\frac{19}{20}$B.$\frac{20}{21}$C.$\frac{21}{22}$D.$\frac{22}{23}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,長方形ABCD中,AB=2,BC=4,以D為圓心的兩個圓心半圓,半徑分別為1和2,G為大半圓直徑的右端點,E為大半圓上的一個動點,DE與小半圓交于點F,EM⊥BC,垂足為M,EM與大半圓直徑交于點H,F(xiàn)N⊥EM,垂足為N.
(Ⅰ)設(shè)∠GDE=30°,求MN的長度;
(Ⅱ)求△BMN的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列各式中正確的是(  )
A.-$\sqrt{x}$=(-x)${\;}^{\frac{1}{2}}$B.x${\;}^{-\frac{1}{5}}$=-$\root{5}{x}$C.(-x)${\;}^{\frac{2}{3}}$=x${\;}^{\frac{2}{3}}$D.x${\;}^{\frac{2}{6}}$=x${\;}^{\frac{1}{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)$\frac{π}{2}$<α<π,若sin(α+$\frac{π}{6}$)=$\frac{1}{3}$,則cos($\frac{2π}{3}$+α)=(  )
A.-$\frac{2\sqrt{2}}{3}$B.$\frac{2\sqrt{2}}{3}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=$\frac{lg(x+2)}{x-1}$的定義域是( 。
A.(-2,1)B.[-2,1)∪(1,+∞)C.(-2,+∞)D.(-2,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知△ABC三個頂點的坐標(biāo)分別為A(2,0),B(7,0),C(1,2),D為BC的中點.
(Ⅰ)求AD所在直線的方程;
(Ⅱ)求△ACD外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某公司是一家專做某產(chǎn)品國內(nèi)外銷售的企業(yè),第一批產(chǎn)品在上市40天內(nèi)全部售完,該公司對第一批產(chǎn)品的銷售情況進行了跟蹤調(diào)查,其調(diào)查結(jié)果如下:圖①中的折線是國內(nèi)市場的銷售情況;圖②中的拋物線是國外市場的銷售情況;圖③中的折線是銷售利潤與上市時間的關(guān)系(國內(nèi)外市場相同),

(1)求該公司第一批產(chǎn)品在國內(nèi)市場的日銷售量f(t)(單位:萬件),國外市場的日銷售量g(t)(單位:萬件)與上市時間t(單位:天)的關(guān)系式;
(2)求該公司第一批產(chǎn)品日銷售利潤Q(t)(單位:萬元)與上市時間t(單位:天)的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知0<θ<π,tan(θ+$\frac{π}{4}$)=$\frac{1}{7}$,那么sinθ+cosθ=-$\frac{1}{5}$.

查看答案和解析>>

同步練習(xí)冊答案