1.已知cosα=-$\frac{{\sqrt{3}}}{2}$,且α∈[0,π),那么α的值等于$\frac{5π}{6}$.

分析 根據(jù)cosα=-$\frac{{\sqrt{3}}}{2}$,且α∈[0,π),可得α的值.

解答 解:根據(jù)cosα=-$\frac{{\sqrt{3}}}{2}$,且α∈[0,π),可得α=π-$\frac{π}{6}$=$\frac{5π}{6}$,
故答案為:$\frac{5π}{6}$.

點(diǎn)評(píng) 本題主要考查根據(jù)三角函數(shù)的值求角,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知a∈R,復(fù)數(shù)z=(a-2i)(1+i)(i為虛數(shù)單位)的共軛復(fù)數(shù)$\overline z$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第四象限,則a的取值范圍為(-2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知數(shù)列{an}滿足(an+1-1)(an-1)=3(an-an+1),a1=2,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若實(shí)數(shù)a,b,c,d滿足(b+2a2-6lna)2+|2c-d+6|=0,(a-c)2+(b-d)2的最小值為m,則函數(shù)f(x)=ex+$\frac{1}{5}$mx-3零點(diǎn)所在的區(qū)間為( 。
A.$({-\frac{1}{4},0})$B.$({0,\frac{1}{4}})$C.$({\frac{1}{4},\frac{1}{2}})$D.$({\frac{1}{2},1})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.對(duì)定義在區(qū)間D上的函數(shù)f(x)和g(x),如果對(duì)任意x∈D,都有|f(x)-g(x)|≤1成立,那么稱函數(shù)f(x)在區(qū)間D上可被G(X)替代,D稱為“替代區(qū)間”.給出以下命題:
①f(x)=x2+1在區(qū)間(-∞,+∞)上可被g(x)=x2$+\frac{1}{2}$替代;
②f(x)=x可被g(x)=1-$\frac{1}{4x}$替代的一個(gè)“替代區(qū)間”為[$\frac{1}{4}$,$\frac{3}{2}$];
③f(x)=lnx在區(qū)間[1,e]可被g(x)=x-b替代,則e-2≤b≤2;
④f(x)=lg(ax2+x)(x∈D1),g(x)=sinx(x∈D2),則存在實(shí)數(shù)a(a≠0),使得f(x)在區(qū)間D1∩D2 上被g(x)替代;
其中真命題的有①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如果函數(shù)y=a2x+2ax-1(a>0,a≠1)在區(qū)間[-1,1]上的最大值是14,則實(shí)數(shù)a的值為3或$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知角α的終邊在直線y=-3x上,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知扇形的中心角的角度是120°,半徑為2,則扇形的弧長(zhǎng)是$\frac{4}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.將甲、乙、丙等六人分配到A,B,C三個(gè)社區(qū)服務(wù),每個(gè)社區(qū)2人,要求甲必須在A社區(qū),乙和丙均不能在C社區(qū),則不同的安排種數(shù)為9.

查看答案和解析>>

同步練習(xí)冊(cè)答案