20.若-$\frac{π}{2}$<α<β<$\frac{π}{2}$,則α-β的取值范圍是( 。
A.(-π,π)B.(0,π)C.(-π,0)D.{0}

分析 由已知中-$\frac{π}{2}$<α<β<$\frac{π}{2}$,可得α-β<0,再由不等式的基本性質(zhì)可得-$\frac{π}{2}$<-β<$\frac{π}{2}$,與-$\frac{π}{2}$<α<$\frac{π}{2}$相加可得答案.

解答 解:∵-$\frac{π}{2}$<α<β<$\frac{π}{2}$,
∴α-β<0,
又由∵-$\frac{π}{2}$<-β<$\frac{π}{2}$,
可得:-π<α-β<π,
故:-π<α-β<0,
即α-β的取值范圍是(-π,0),
故選:C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是不等式的基本性質(zhì),熟練掌握不等式的基本性質(zhì)是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)y=f(x)是定義在R上的任意不恒為零的函數(shù),則下列判斷:①y=f(|x|)為偶函數(shù);②y=f(x)+f(-x)為非奇非偶函數(shù);③y=f(x)-f(-x)為奇函數(shù);④y=[f(x)]2 為偶函數(shù).其中正確判斷的個(gè)數(shù)有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在△ABC中,AC=1,BC=2$\sqrt{3}$,C=$\frac{π}{6}$,如果不等式|$\overrightarrow{BA}$-t$\overrightarrow{BC}$|≤|$\overrightarrow{AC}$|恒成立,則實(shí)數(shù)t的取值范圍是[$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.電子蛙跳游戲是:青蛙第一步從如圖所示的正方體ABCD-A1B1C1D1頂點(diǎn)A起跳,每步從一頂點(diǎn)跳到相鄰的頂點(diǎn).
(1)直接寫(xiě)出跳兩步跳到C的概率P;
(2)求跳三步跳到C1的概率P1;
(3)青蛙跳五步,用X表示跳到過(guò)C1的次數(shù),求隨機(jī)變量X的概率分布.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)y=x2-1(x≤0)的反函數(shù)是(  )
A.y=$\sqrt{x+1}$(x≥-1)B.y=±$\sqrt{x+1}$(x≥-1)C.y=-$\sqrt{x+1}$(x≥-1)D.y=-$\sqrt{-x+1}$(x≤1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.觀察下列事實(shí):|x|+|y|≤1的不同整數(shù)解(x,y)的個(gè)數(shù)為5,|x|+|y|≤2 的不同整數(shù)解(x,y)的個(gè)數(shù)為13,|x|+|y|≤3的不同整數(shù)解(x,y)的個(gè)數(shù)為25 ….則|x|+|y|≤20的不同整數(shù)解(x,y)的個(gè)數(shù)為( 。
A.841B.761C.925D.941

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=x2+2alnx.
(1)若函數(shù)f(x)的圖象在(2,f(2))處的切線斜率為2,求函數(shù)f(x)的圖象在(1,f(1))的切線方程;
(2)若函數(shù)g(x)=$\frac{2}{x}$+f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.解方程組:$\left\{\begin{array}{l}{3(x+y)-4(x-y)=4}\\{\frac{x+y}{2}+\frac{x-y}{6}=1}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若函數(shù)f(x)=2sin(ωx)(ω>0)的最小正周期為$\frac{π}{2}$,則ω=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案