6.已知某棱錐的三視圖如圖所示,俯視圖為正方形,根據(jù)圖中所給的數(shù)據(jù).那么該棱錐的表面積是( 。
A.8+4$\sqrt{2}$B.4+2$\sqrt{2}$C.2$\sqrt{2}$+2$\sqrt{3}$D.2+2$\sqrt{2}$+2$\sqrt{3}$

分析 由已知中的三視圖可得:該幾何體是一個(gè)以俯視圖為底面的四棱錐,求出各個(gè)面的面積,相加可得答案.

解答 解:由已知中的三視圖可得:該幾何體是一個(gè)以俯視圖為底面的四棱錐,
其直觀圖如下圖所示:

其中底面ABCD是對(duì)角線長(zhǎng)AC=BD=2,即邊長(zhǎng)為AB=BC=CD=AD=$\sqrt{2}$的正方形,高VD=2,
則VA=VC=$\sqrt{6}$,VB=2$\sqrt{2}$,則側(cè)面VAB和VBC均是在VB為斜邊的直角三角形,
則底面ABCD的面積為:2,
側(cè)面VAD和VCD的面積均為:$\sqrt{2}$,
側(cè)面VAB和VBC的面積均為:$\sqrt{3}$,
故幾何體的表面積S=2+2$\sqrt{2}$+2$\sqrt{3}$,
故選:D.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是由三視圖,求體積和表面積,根據(jù)已知的三視圖,判斷幾何體的形狀是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知p:0<m<1,q:橢圓$\frac{{x}^{2}}{m}$+y2=1的焦點(diǎn)在y軸上,則p是q的充要條件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”填空)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知A,B兩地相距100km.按交通法規(guī)規(guī)定:A,B兩地之間的公路上車速要求不低于60km/h且不高于100km/h.假設(shè)汽車以xkm/h速度行駛時(shí),每小時(shí)耗油量為($4+\frac{1}{128000}{x^3}-\frac{1}{80}x$)升,汽油的價(jià)格是6元/升,司機(jī)每小時(shí)的工資是24元.
(1)若汽車從A地以64km/h的速度勻速行駛到B地,需耗油多少升?
(2)當(dāng)汽車以多大的速度勻速行駛時(shí),從A地到B地的總費(fèi)用最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,若m=3,則輸出的結(jié)果為( 。
A.3B.27C.81D.729

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an}是各項(xiàng)均為正數(shù)的等差數(shù)列,首項(xiàng)a1=1,其前n項(xiàng)和為Sn;數(shù)列{bn}是等比數(shù)列,首項(xiàng)b1=2,且b2S2=16,b3S3=72.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若${c_n}=\frac{S_n}{b_n}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.同時(shí)具有性質(zhì)“①最小正周期是4π;②$x=\frac{π}{3}$是圖象的一條對(duì)稱軸;③在區(qū)間$(\frac{2π}{3},\frac{5π}{6})$上是減函數(shù)”的一個(gè)函數(shù)是( 。
A.$y=sin(2x-\frac{π}{6})$B.$y=cos(2x-\frac{π}{6})$C.$y=cos(\frac{x}{2}+\frac{π}{3})$D.$y=sin(\frac{x}{2}+\frac{π}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過(guò)點(diǎn)(3,-1),離心率e=$\frac{\sqrt{6}}{3}$.
(1)求橢圓C的方程;
(2)分別過(guò)橢圓C的四個(gè)頂點(diǎn)作坐標(biāo)軸的垂線,圍成如圖所示的矩形,A、B是所圍成的矩形在x軸上方的兩個(gè)頂點(diǎn).若P、Q是橢圓C上兩個(gè)動(dòng)點(diǎn),直線0P、OQ與橢圓的另一交點(diǎn)分別為P1、Q1,且直線OP、0Q的斜率之積等于直線OA、0B的斜率之積,試問(wèn)四邊形PQP1Q1的面積是否為定值?若為定值,求出其值;若不為定值,說(shuō)明理由(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.當(dāng)a為何值時(shí),(a-2)x2+4$\sqrt{5}$x+a-3<0的解為一切實(shí)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在等差數(shù)列{an}中,已知a3=8,且滿足a10>21,a12<27,若d∈Z,求公差d的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案