5.2015男籃亞錦賽決賽階段,中國男籃以9連勝的不敗戰(zhàn)績贏得第28屆亞錦賽冠軍,同時拿到亞洲唯一1張直通里約奧運(yùn)會的入場券.賽后,中國男籃主力易建聯(lián)榮膺本屆亞錦賽MVP(最有價值球員),下表是易建聯(lián)在這9場比賽中投籃的統(tǒng)計(jì)數(shù)據(jù).
比分易建聯(lián)技術(shù)統(tǒng)計(jì)
投籃命中罰球命中全場得分真實(shí)得分率
中國91-42新加坡3/76/71259.52%
中國76-73韓國7/136/82060.53%
中國84-67約旦12/202/526x
中國75-62哈薩克期坦5/75/51581.52%
中國90-72黎巴嫩7/115/51971.97%
中國85-69卡塔爾4/104/41355.27%
中國104-58印度8/125/52173.94%
中國70-57伊朗5/102/41355.27%
中國78-67菲律賓4/143/61133.05%
注:(1)表中a/b表示出手b次命中a次;
(2)TS%(真實(shí)得分率)是衡量球員進(jìn)攻的效率,其計(jì)算公式為:
TS%=$\frac{全場得分}{2×(投籃出手次數(shù)+0.44×罰球出手次數(shù))}$.
(Ⅰ)求表中x的值;
(Ⅱ)從上述9場比賽中隨機(jī)選擇一場,求易建聯(lián)在該場比賽中TS%超過50%的概率;
(Ⅲ)用x來表示易建聯(lián)某場的得分,用y來表示中國隊(duì)該場的總分,畫出散點(diǎn)圖如圖所示,請根據(jù)散點(diǎn)圖判斷y與x之間是否具有線性相關(guān)關(guān)系?結(jié)合實(shí)際簡單說明理由.

分析 (Ⅰ)由TS%=$\frac{全場得分}{2×(投籃出手次數(shù)+0.44×罰球出手次數(shù))}$可得表中x的值;
(Ⅱ)由已知,結(jié)合古典概型概率計(jì)算公式可得:易建聯(lián)在該場比賽中TS%超過50%的概率;
(Ⅲ)根據(jù)散點(diǎn)圖并不是分布在某一條直線的周圍,可得結(jié)論.

解答 解:(Ⅰ)由題意得:
x=$\frac{26}{2×(20+0.44×5)}$=58.56%.…(4分)
(Ⅱ)設(shè)易建聯(lián)在比賽中TS%超過50%為事件A,
則共有8場比賽中TS%超過50%,
故P(A)=$\frac{8}{9}$.…(8分)
(Ⅲ)不具有線性相關(guān)關(guān)系.…(10分)
因?yàn)樯Ⅻc(diǎn)圖并不是分布在某一條直線的周圍.
籃球是集體運(yùn)動,個人無法完全主宰一場比賽.…(12分)

點(diǎn)評 本題考查的知識點(diǎn)是可線性化的回歸分析,古典概型,是統(tǒng)計(jì)和概率的綜合運(yùn)用,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知cosα+sinβ=$\frac{3}{5}$,sinα+cosβ=$\frac{4}{5}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆重慶市高三文上適應(yīng)性考試一數(shù)學(xué)試卷(解析版) 題型:解答題

選修4-5:不等式選講

設(shè)函數(shù)

(1)當(dāng)時,求不等式的解集;

(2)若不等式,在上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.P為矩形ABCD所在平面外一點(diǎn),PA⊥平面ABCD,若已知AB=3,AD=4,PA=1,則點(diǎn)P到BD的距離為$\frac{13}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆重慶市高三文上適應(yīng)性考試一數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓過點(diǎn),且離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若點(diǎn)與點(diǎn)均在橢圓上,且關(guān)于原點(diǎn)對稱,問:橢圓上是否存在點(diǎn)(點(diǎn)在一象限),使得為等邊三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆重慶市高三文上適應(yīng)性考試一數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在幾何體中,四邊形是正方形,正三角形的邊長為2,為線段上一點(diǎn),為線段的中點(diǎn).

(1)求證:平面平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,兩個圓相內(nèi)切于點(diǎn)T,公切線為TN,外圓的弦TC,TD分別交內(nèi)圓于A、B兩點(diǎn),并且外圓的弦CD恰切內(nèi)圓于點(diǎn)M.
(Ⅰ)證明:AB∥CD;
(Ⅱ)證明:AC•MD=BD•CM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,圓錐的軸截面PAB是等腰直角三角形,AB的中點(diǎn)為O,C是底面圓周上異于A,B的任意一點(diǎn),D為線段OC的中點(diǎn),E為母線PA上一點(diǎn),且AE=3EP.
(1)證明:ED∥平面PCB;
(2)設(shè)二面角A-OP-C的大小為θ,二面角A-PC-B的大小為φ,求證$\frac{1}{co{s}^{2}φ}$-$\frac{8}{si{n}^{2}θ}$為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知命題p:方程$\frac{{x}^{2}}{m+1}$+$\frac{{y}^{2}}{2-m}$=1表示焦點(diǎn)在x軸上的橢圓.
命題q:實(shí)數(shù)m滿足m2-4am+3a2<0,其中a>0.
(Ⅰ)當(dāng)a=1且p∧q為真命題時,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案