A. | $\frac{1}{5}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
分析 利用兩角和的余弦公式化簡(jiǎn)函數(shù)的解析式,再利用余弦函數(shù)的單調(diào)性求得f(x)的減區(qū)間,結(jié)合條件可得,-$\frac{π}{4ω}$≤-$\frac{π}{2}$,且 $\frac{3π}{4ω}$≥$\frac{π}{2}$,由此求得ω的范圍,從而得出結(jié)論.
解答 解:∵函數(shù)f(x)=cosωx-sinωx=$\sqrt{2}$cos(ωx+$\frac{π}{4}$)(ω>0)在(-$\frac{π}{2}$,$\frac{π}{2}$)上單調(diào)遞減,
∴2kπ≤ωx+$\frac{π}{4}$<≤2kπ+π,求得-$\frac{π}{4ω}$+$\frac{2kπ}{ω}$≤x≤$\frac{3π}{4ω}$+$\frac{2kπ}{ω}$ (k∈Z).
∵f(x)在(-$\frac{π}{2}$,$\frac{π}{2}$)上單調(diào)遞減,∴-$\frac{π}{4ω}$≤-$\frac{π}{2}$,且 $\frac{3π}{4ω}$≥$\frac{π}{2}$,
求得 0<ω≤$\frac{1}{2}$,
故選:D.
點(diǎn)評(píng) 本題主要考查兩角和的余弦公式,余弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 20 | B. | 16 | C. | 15 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題“若am2≤bm2,則a≤b”是假命題 | |
B. | 命題“?x∈R,x3-x2-1≤0”的否定是“?x0∈R,${{x}_{0}}^{3}$-${{x}_{0}}^{2}$-1>0” | |
C. | “若a=1,則直線x+y=0和直線x-ay=0互相垂直”的逆否命題為真命題 | |
D. | 命題“p∨q為真命題”是命題“p∧q為真”的充分不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com