4.已知命題p:?x∈(0,+∞),2x>1,則¬p為?x0∈(10,+∞),2x≤1.

分析 命題p是全稱命題,其否定應(yīng)為特稱命題,注意量詞和不等號(hào)的變化.

解答 解:命題p“:?x∈(0,+∞),2x>1”是全稱命題,
否定時(shí)將量詞對(duì)任意的x變?yōu)?x,再將不等號(hào)>變?yōu)椤芗纯桑?br />故答案為:?x0∈(10,+∞),2x≤1.

點(diǎn)評(píng) 本題考查命題的否定,全稱命題和特稱命題,屬基本知識(shí)的考查.注意在寫命題的否定時(shí)量詞的變化,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}中,a1=3,(n+1)an-nan+1=1,n∈N*
(Ⅰ)證明:數(shù)列{an}是等差數(shù)列,并求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}的通項(xiàng)bn=$\frac{4}{{(a}_{n}-1){(a}_{n+1}-1)}$,記數(shù)列{bn}的前n項(xiàng)和為Tn,若對(duì)n∈N*,Tn≤k(n+4)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若點(diǎn)(3,1)是拋物線y2=2px的一條弦的中點(diǎn),且這條弦所在直線的斜率為2,則p=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.給出下列命題:
①若a,b,m都是正數(shù),且$\frac{a+m}{b+m}>\frac{a}$,則a<b;
②若f'(x)是f(x)的導(dǎo)函數(shù),若?x∈R,f'(x)≥0,則f(1)<f(2)一定成立;
③命題“?x∈R,x2-2x+1<0”的否定是真命題;
④“|x|≤1,且|y|≤1”是“|x+y|≤2”的充分不必要條件.
其中正確命題的序號(hào)是( 。
A.①②③B.①②④C.②③④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知$\overrightarrow{a}$=(1,1,1),$\overrightarrow$=(x,-1,-1),若$\overrightarrow{a}$⊥$\overrightarrow$,則實(shí)數(shù)x=( 。
A.-1B.1C.2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)a=30.5,b=log32,c=cos$\frac{2π}{3}$,則( 。
A.a<b<cB.c<a<bC.b<c<aD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$均為非零向量,則“$\overrightarrow{a}$=$\overrightarrow$”是“($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{c}$=0”的( 。
A.充分不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)$a={π^{0.3}},b={log_π}3,c={log_3}sin\frac{2π}{3}$,則(  )
A.a>b>cB.c>a>bC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=$lo{g}_{\frac{1}{2}}$[x2-2(2a-1)x+8].
(1)若f(x)的定義域?yàn)镽,求a的取值范圍;
(2)若f(x)的值域?yàn)镽,求a的取值范圍;
(3)f(x)在[-1,+∞)上有意義,求a的取值范圍;
(4)f(x)在[a,+∞]上為減函數(shù),求a的取值范圍;
(5)a=$\frac{3}{4}$時(shí),y=f[sin(2x-$\frac{π}{3}$)],x∈[$\frac{π}{12}$,$\frac{π}{2}$]的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案